Ρ	age 4	1	Mark Scheme	Syllabus	Pap	er	
			nbridge International AS Level – October/November 2015	9709	23		
1	Inte	Integrate to obtain $k \ln(2x+5)$					
		Obtain correct $\frac{3}{2}\ln(2x+5)$					
	App Use	ly limits	and use logarithm law for $\ln a - \ln b$ n power law		M1 M1 A1	[5]	
2	(i)	<u>Either</u>	State or imply non-modulus equation $(2x+3)^2 = (x+8)^2$ or correspondent of linear equations Solve 3-term quadratic equation or 2 linear equations Obtain $x = -\frac{11}{3}$ and $x = 5$	onding pair	B1 M1 A1		
		<u>Or</u>	Obtain $x = 5$ from graphical method, inspection, equation, Obtain $x = -\frac{11}{3}$ similarly		B1 B2	[3]	
	(ii)	Use loga Obtain 2	writhms to solve equation of form $2^y = k$ where $k > 0$ 3.32		M1 A1	[2]	
3	Obtain $\frac{dx}{dt} = e^t + (t+1)e^t$ or equivalent				B1		
	Obta	ain $\frac{dy}{dt} = 1$	$t(t+4)^{-\frac{1}{2}}$		B 1		
		uı	= 0 and divide to obtain gradient of tangent		M1		
			lowing their first derivatives		A1		
		-	n of tangent through (1,12)		M1		
	Obta	ain $3x-4$	4y + 45 = 0 or equivalent of required form		A1	[6]	
4	(i)	_	division, or equivalent, at least as far as quotient $3x^2 + kx$		M1		
		1	artial quotient $3x^2 + 11x$ omplete quotient $3x^2 + 11x + 20$ with no errors seen		A1		
			remainder is 39		A1 B1	[4]	
	(ii)		imply $(x-2)(3x^2+11x+20) = 0$		B1		
			e discriminant of quadratic factor or equivalent 119 or equivalent and confirm only one real root		M1 A1	[3]	
5	(i)	e	e to obtain $e^{3x} + 5e^{x}$		B1		
			oth limits and subtract for expression of form $k_1e^{3x} + k_2e^x$		M1		
			$e^{3a} + 5e^a = 106$ or similarly simplified equivalent ge and introduce logarithms		A1 M1		
		-	given answer $a = \frac{1}{3} \ln(106 - 5e^a)$		A1	[5]	
			-				

Page 5		Syllabus	Paper	
	Cambridge International AS Level – October/November 2015	9709	23	
(ii)	Use the iterative formula correctly at least once Obtain final answer 1.477 Show sufficient iterations to justify accuracy to 3 d.p. or show sign change in i (1.4765, 1.4775)	interval	M1 A1 A1	[3]
6 (i)	State or imply $R = 3$ Use appropriate formula to find α Obtain 41.81°		B1 M1 A1	[3]
(ii)	 (a) Attempt to find one correct value of θ + α Obtain one correct value (30.7 or 245.6) of θ Carry out correct method to find second answer Obtain second correct answer and no others in range 		M1 A1 M1 A1	[4]
	(b) State greatest value is 13, following their value of R State least value is 7, following their value of R		B1 B1	[2]
7 (i)	Use quotient rule or equivalent to find first derivative Obtain $\frac{2\cos 2x(\cos x + 1) + \sin 2x \sin x}{(\cos x + 1)^2}$ or equivalent		M1 A1	
	Use at least one of $\cos 2x = 2\cos^2 x - 1$ and $2x = 2\sin x \cos x$ Express first derivative in terms of $\cos x$ only		B1 M1	
	Obtain $\frac{2\cos^3 x + 4\cos^2 x - 2}{(\cos x + 1)^2}$ or equivalent		A1	
	Factorise numerator or divide numerator by $(\cos x + 1)$ or equivalent		M1	
	Confirm given answer $\frac{2(\cos^2 x + \cos x - 1)}{\cos x + 1}$ correctly		A1	[7]
(ii)	Use quadratic formula or equivalent to find value of $\cos x$ Obtain <i>x</i> -coordinate 0.905		M1 A1	

Obtain x-coordinate -0.905 and no others in range

A1 [3]