Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2015	9709	22

1 (i) Either Square both sides to obtain three-term quadratic equation M1
Solve three-term quadratic equation to obtain two values M1
Obtain -1 and $\frac{7}{3}$ A1
Or Obtain $\frac{7}{3}$ from graphical method, inspection or linear equation B1Obtain -1 similarlyB2
[3]
(ii) Use logarithmic method to solve an equation of the form $5^{y}=k$ where $\mathrm{k}>0$M1Obtain 0.526 and no othersA1

2 (i) Use the iterative formula correctly at least once
Obtain final answer 2.289
Show sufficient iterations to justify accuracy to 3 d.p. or show sign change in interval (2.2885, 2.2895)
(ii) State $x=2+\frac{4}{x^{2}+2 x+4}$ or equivalent

Obtain $\sqrt[3]{12}$

3 State or imply that $\ln y=\ln K+m \ln x$
Form a numerical expression for gradient of line M1
Obtain -1.39 or -1.4 A1
Use their gradient value and one point correctly to obtain intercept M1
Obtain value for $\ln K$ between 4.26 and 4.28 A1
Obtain $K=71$ or $K=72$ or value rounding to either with no error noted

4 (i) Substitute $x=-2$ and equate to zero M1
Solve equation to confirm $a=-4$
(ii) (a) Find quadratic factor by division, inspection, identity, ... M1

Obtain $6 x^{2}-x-2$
Conclude $(x+2)(3 x-2)(2 x+1)$

$$
\mathrm{e}(x+2)(3 x-2)(2 x+1)
$$

(b) State or imply at least $\sec \theta=-2$ and attempt solution M1

Obtain 120° and no others in range

5 (i) Use product rule to obtain form $k_{1} \mathrm{e}^{-3 x}+k_{2} x \mathrm{e}^{-3 x}$
Obtain correct $4 \mathrm{e}^{-3 x}-12 x \mathrm{e}^{-3 x}$
Obtain $x=\frac{1}{3}$ or 0.333 or better and no other
(ii) Use quotient rule or equivalent

Obtain correct numerator $8 x(x+1)-4 x^{2}$ or equivalent
Equate numerator to zero and solve to find at least one value
Obtain $x=-2$

7 (i) Express $\cos ^{2} x$ in form $k_{1}+k_{2} \cos 2 x$
Obtain correct $\frac{1}{2}+\frac{1}{2} \cos 2 x$
A1
Rewrite second term as $\sec ^{2} x$ B1
Integrate to obtain at least terms $k_{3} \sin 2 x$ and $k_{4} \tan x \quad$ M1
Obtain $\frac{1}{2} x+\frac{1}{4} \sin 2 x+\tan x$
Confirm given result $\frac{1}{6} \pi+\frac{9}{8} \sqrt{3}$
(ii) State volume is $\pi \int\left(\cos x+\frac{1}{\cos x}\right)^{2}(\pi$ maybe implied by later appearance $)$

Expand to obtain $\pi \int\left(\cos ^{2} x+\frac{1}{\cos ^{2} x}+2\right) \mathrm{d} x$ or $\int\left(\cos ^{2} x+\frac{1}{\cos ^{2} x}+2\right) \mathrm{d} x$
Integrate integrand involving three terms (in part using part (i)
or otherwise i.e. $k_{3} \sin 2 x+k_{4} \tan x+k_{5} x$)
Obtain $\frac{5}{6} \pi^{2}+\frac{9}{8} \sqrt{3} \pi$ or exact equivalent

Obtain $x=0$

6 (i) Either Obtain $\frac{\mathrm{d} x}{\mathrm{~d} t}=-3 \sin t$
Obtain $\frac{\mathrm{d} y}{\mathrm{~d} t}=-2 \sin \left(t-\frac{1}{6} \pi\right)$
Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$
Expand $-2 \sin \left(t-\frac{1}{6} \pi\right)$ to obtain $k_{1} \sin t+k_{2} \cos t$
Confirm given result $\frac{1}{3}(\sqrt{3}-\cot t)$ correctly M1
Cum
$\begin{aligned} & \text { Or } \text { Obtain } \frac{\mathrm{d} x}{\mathrm{~d} t}=-3 \sin t \\ & \text { Expand } y \text { to obtain } k_{3} \cos t+k_{4} \sin t \\ & \text { Obtain } \frac{\mathrm{d} y}{\mathrm{~d} t}=-\sqrt{3} \sin t+\cos t \text { or equivalent }\end{aligned}$
Or Obtain $\frac{\mathrm{d} x}{\mathrm{~d} t}=-3 \sin t$
Expand y to obtain $k_{3} \cos t+k_{4} \sin t$
Obtain $\frac{\mathrm{d} y}{\mathrm{~d} t}=-\sqrt{3} \sin t+\cos t$ or equivalent
$\begin{aligned} & \text { Or } \text { Obtain } \frac{\mathrm{d} x}{\mathrm{~d} t}=-3 \sin t \\ & \text { Expand } y \text { to obtain } k_{3} \cos t+k_{4} \sin t \\ & \text { Obtain } \frac{\mathrm{d} y}{\mathrm{~d} t}=-\sqrt{3} \sin t+\cos t \text { or equivalent }\end{aligned}$
Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$
Confirm given result $\frac{1}{3}(\sqrt{3}-\cot t)$ correctly
(ii) Identify value of t as $\frac{1}{2} \pi$ only \quad B1
$\begin{array}{ll}\text { Obtain gradient at relevant point as } \frac{1}{3} \sqrt{3} \text { or } 0.577 \text { or better } & \text { B1 }\end{array}$
Form equation of tangent through (0,1), using their gradient M1
Obtain $y=\frac{1}{3} \sqrt{3} x+1$ or equivalent

