Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2015	9709	21

1 Introduce logarithms and use power law twice
M1*
Obtain $(x+3) \log 5=(x-1) \log 7$ or equivalent
Solve linear equation for x
M1 dep
Obtain 20.1

2 Use quotient rule or, after adjustment, product rule M1*
Obtain $\frac{3 x-15-3 x-1}{(x-5)^{2}}$ or equivalent
Equate first derivative to -4 and solve for x
M1 dep
Obtain x-coordinates 3 and 7 or one correct pair of coordinates
Obtain y-coordinates -5 and 11 respectively or other correct pair of coordinates

3 (i) State or imply $R=17$
Use appropriate formula to find α
Obtain 61.93
(ii) Attempt to find at least one value of $\theta+\alpha$

Obtain one correct value of $\theta(97.4$ or 318.7$)$ A1
Carry out correct method to find second answer M1
Obtain second correct value and no others between 0 and 360
A1

4 (i) Make a recognisable sketch of $y=\ln x$
Draw straight line with negative gradient crossing positive y-axis and justify one real root
(ii) Consider sign of $\ln x+\frac{1}{2} x-4$ at 4.5 and 5.0 or equivalent Complete the argument correctly with appropriate calculations
(iii) Use the iterative formula correctly at least once

Show sufficient iterations to justify accuracy to 2 d.p. or show sign change in interval (4.835, 4.845)

5 (a) Use $\tan ^{2} x=\sec ^{2} x-1$
Obtain integral of form $p \tan x+q x+r \cos 2 x$
Obtain $\tan x-x-\frac{1}{2} \cos 2 x+c$

B1 M1
(b) Obtain integral of form $\mathrm{ke}^{1-2 x}$

Obtain $-\frac{3}{2} e^{1-2 x}$
Apply both limits the correct way round
Obtain $-\frac{3}{2} \mathrm{e}^{-1}+\frac{3}{2} \mathrm{e}$ or exact equivalent

6 (i) Carry out division at least as far as quotient $x^{2}+k x$
Obtain partial quotient $x^{2}+2 x$
Obtain quotient $x^{2}+2 x+1$ with no errors seen A1
Obtain remainder $5 x+2$
(ii) Either Carry out calculation involving $12 x+6$ and their remainder $a x+b$

$$
\begin{equation*}
\text { Obtain } p=7, q=4 \tag{2}
\end{equation*}
$$

Or Multiply $x^{2}-x+4$ by their three-term quadratic quotient , Obtain $p=7, q=4$ A1
(iii) Show that discriminant of $x^{2}-x+4$ is negative

Form equation $\left(x^{2}-x+4\right)\left(x^{2}+2 x+1\right)=0$ and attempt solution
Show that $x^{2}+2 x+1=0$ gives one root $x=-1$

7 (i) Obtain $12 \sin t \cos t$ or equivalent for $\frac{\mathrm{d} x}{\mathrm{~d} t}$
Obtain $4 \cos 2 t-6 \sin 2 t$ or equivalent for $\frac{\mathrm{d} y}{\mathrm{~d} t}$
Obtain expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t
Use $2 \sin t \cos t=\sin 2 t$
Confirm given answer $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{3} \cot 2 t-1$ with no errors seen
(ii) State or imply $\tan 2 t=\frac{2}{3}$

Obtain $t=0.294$
Obtain $t=1.865$
(iii) Attempt solution of $2 \sin 2 t+3 \cos 2 t=0$ at least as far as $\tan 2 t=\ldots$

Obtain $\tan 2 t=-\frac{3}{2}$ or equivalent
Substitute to obtain $-\frac{13}{9}$

