Page 4		Mark Scheme	Syllabus	Paper	
		Cambridge International AS Level – October/November 2015	9709	21	
1	Intro Obta	duce logarithms and use power law twice in $(x+3)\log 5 = (x-1)\log 7$ or equivalent	м	M1* A1	
	Obta	in 20.1	IVI	A1	[4]
2	Use	quotient rule or, after adjustment, product rule 3x-15-3x-1		M1*	
	Obtain $\frac{(x-5)^2}{(x-5)^2}$ or equivalent			A1	
	Equa Obta	Equate first derivative to -4 and solve for x Obtain x-coordinates 3 and 7 or one correct pair of coordinates			
	Obta	in y-coordinates -5 and 11 respectively or other correct pair of coordinates		A1	[5]
3	(i)	State or imply $R = 17$		B 1	
		Use appropriate formula to find α Obtain 61.93		M1 A1	[3]
	(ii)	Attempt to find at least one value of $\theta + \alpha$		M1	
		Carry out correct method to find second answer		AI M1	
		Obtain second correct value and no others between 0 and 360		A1	[4]
4	(i)	Make a recognisable sketch of $y = \ln x$		B 1	
		Draw straight line with negative gradient crossing positive <i>y</i> -axis and justify one real root		B 1	[2]
	(ii)	Consider sign of $\ln x + \frac{1}{2}x - 4$ at 4.5 and 5.0 or equivalent		M1	
		Complete the argument correctly with appropriate calculations		A1	[2]
	(iii)	Use the iterative formula correctly at least once Obtain final answer 4 84		M1 A1	
		Show sufficient iterations to justify accuracy to 2 d.p. or show sign change in interval (4.835, 4.845)			[2]
		III IIIWI VAI (4.033, 4.043)		AI	[3]
5	(a)	Use $\tan^2 x = \sec^2 x - 1$ Obtain integral of form $n \tan x + ax + x \cos 2x$		B1 M1	
		Obtain tan x = x = $\frac{1}{200}$ 2x + c		1711 A 1	[2]
		$\frac{1}{2} \cos(2x + c)$		AI	[3]

Page 5		Mark Scheme		Paper	
		Cambridge International AS Level – October/November 2015	9709	21	
		(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			
	(b)	Obtain integral of form ke ⁻²		M1*	
		Obtain $-\frac{1}{2}e^{i-2x}$		A1	
		Apply both limits the correct way round $\frac{2}{3}$	Μ	1 dep	
		Obtain $-\frac{3}{2}e^{-1} + \frac{3}{2}e$ or exact equivalent		A1	[4]
6	(i)	Carry out division at least as far as quotient $x^2 + kx$		M1	
		Obtain partial quotient $x^2 + 2x$		A1	
		Obtain quotient $x^2 + 2x + 1$ with no errors seen		A1	Г 4 Э
		Obtain remainder $5x + 2$		AI	[4]
	(ii)	<u>Either</u> Carry out calculation involving $12x + 6$ and their remainder $ax + b$		M1	
		Obtain $p = 7, q = 4$		A1	
		<u>Or</u> Multiply $x^2 - x + 4$ by their three-term quadratic quotient		M1	[2]
		Obtain $p = 7, q = 4$		AI	[2]
	(iii)	Show that discriminant of $x^2 - x + 4$ is negative		B 1	
		Form equation $(x^2 - x + 4)(x^2 + 2x + 1) = 0$ and attempt solution		M1	
		Show that $x^2 + 2x + 1 = 0$ gives one root $x = -1$		A1	[3]
7	(i)	Obtain $12 \sin t \cos t$ or equivalent for $\frac{dx}{dt}$		B 1	
		Obtain $4\cos 2t - 6\sin 2t$ or equivalent for $\frac{dy}{dt}$		B 1	
		Obtain expression for $\frac{dy}{dx}$ in terms of t		M1	
		Use $2\sin t\cos t = \sin 2t$		A1	
		Confirm given answer $\frac{dy}{dx} = \frac{2}{3}\cot 2t - 1$ with no errors seen		A1	[5]
	(ii)	State or imply $\tan 2t = \frac{2}{2}$		B1	
		3		R1	
		Obtain $t = 0.254$ Obtain $t = 1.865$		B1 B1	[3]
	(iii)	Attempt solution of $2\sin 2t + 3\cos 2t = 0$ at least as far as $\tan 2t =$		M1	
		Obtain $\tan 2t = -\frac{3}{2}$ or equivalent		A1	
		Substitute to obtain $-\frac{13}{9}$		A1	[3]