Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2014	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

1	$\mathrm{N}\left(-35,60^{2}+4 \times 28^{2}\right)$ $\mathrm{N}\left(35,60^{2}+4 \times 28^{2}\right)$ $\frac{0-(-35)}{\sqrt{ }{ }^{\prime 6736^{\prime}}}(=0.426)$ $\frac{0-35}{\sqrt{ }{ }^{6736^{\prime}}}(=-0.426)$$\begin{aligned} & 1-\Phi(" 0.426 ") \\ & =0.335(3 \mathrm{sf}) \end{aligned}$	B1 B1 M1 M1 A1 5	for $\pm(175-2 \times 105)$ or ± 35 for $60^{2}+4 \times 28^{2}$ or 6736 For standardising with their mean and variance. Allow without $\sqrt{ }$ For use of tables and finding area consistent with working
		Total: 5	
2 (i)	(Bin) with $n>50$ and mean (or $n p$) <5 Po(1.5) $1-\mathrm{e}^{-1.5}$ $=0.777(3 \mathrm{sf})$	B1 B1 M1 A1 4	Accept n 'large', p 'small' Poisson with correct mean stated or implied Poisson $1-\mathrm{P}(X=0)$; allow incorrect λ; allow 1 end error SR If zero scored use of Bin leading to 0.778 / 0.779 scores B1
(ii)	3.5 $\begin{aligned} & e^{-3.5}\left(\frac{3.5^{4}}{4!}+\frac{3.5^{5}}{5!}+\frac{3.5^{6}}{6!}\right) \\ & =0.398(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$ A1 3	Correct mean stated or implied Poisson $\mathrm{P}(X=4,5,6)$; allow incorrect λ; allow 1 end error
		Total: 7	
3 (a)	$\begin{aligned} & \quad \int_{0}^{0.5}\left(1.5 t-0.75 t^{2}\right) \mathrm{d} t \quad \text { o.e. } \\ & =\left[0.75 t^{2}-0.25 t^{3}\right]_{0}^{0.5} \\ & =\frac{5}{32} \text { or } 0.156(3 \mathrm{sf}) \end{aligned}$	M1 A1 A1 3	Attempt int $\mathrm{f}(t)$ Correct integration and limits
(b) (i)	$\begin{aligned} & \frac{1}{2} \pi a^{2}=1 \quad \text { or } \pi a^{2}=2 \\ & a=\sqrt{\frac{2}{\pi}} \text { or } 0.798(3 \mathrm{sf}) \end{aligned}$	M1 A1 2	Attempt to find the area and equate to 1
(ii)	0	B1 1	
(iii)	Symmetry stated, seen or implied 0.8	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \end{array}$	Could be a diagram As final answer
		Total: 8	
4 (i)	$\begin{aligned} & \operatorname{Var}\left(P_{s}\right)=\frac{\frac{33}{150} \times \frac{150-33}{150}}{150} \quad(=0.001144) \\ & z=2.576 \\ & \frac{33}{150} \pm z \sqrt{ }{ }^{\circ} 0.001144, \\ & =0.133 \text { to } 0.307(3 \mathrm{sf}) \end{aligned}$	M1 B1 M1 A1 4	Seen. Accept 2.574 to 2.579 Expression of correct form. Any z Must be an interval

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2014	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

(ii)	$\begin{aligned} & \frac{19035}{150}(=126.9=127(3 \mathrm{sf})) \\ & \frac{150}{149}\left(\frac{4054716}{150}-\left(\frac{19035}{150}\right)^{2}\right) \text { o.e. } \\ & =11001.17 \text { or } 11000(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1 3	For use of a correct formula
(iii)	4-digit nos. each digit 0-9 Ignore nos > 9526 Ignore repeats	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$	Some valid way of generating 4 digit random nos from valid method from valid method SR If zero score, full explanation of method for drawing numbers out of a hat can score B1. NB Systematic sampling follows the scheme with first B1 for some way of generating a random starting point.
		Total: 10	
5 (i)	$\begin{aligned} & \frac{4.8}{\sqrt{40}} \\ & \frac{50.3-49.5}{\frac{4.8}{\sqrt{40}}} \\ & 1-\Phi\left({ }^{(} 1.054^{\prime}\right) \\ & =0.146(3 \mathrm{sf}) \end{aligned} \quad(=1.054)$	B1 M1 M1 A1 4	or $\frac{4.8^{2}}{40}$. Accept $4.8 \sqrt{ } 40$ or $4.8^{2} \times 40$ for totals method For standardising with their SD Accept \pm Accept totals method. No mixed methods For use of tables and finding area consistent with their working
(ii) (a)	Looking for decrease	B1	
(b)	H_{0} : Pop mean time spent $($ or $\mu)=49.5$ H_{1} : Pop mean time spent (or μ) <49.5 $\begin{aligned} & \frac{\frac{1920}{40}-49.5}{\frac{4.8}{\sqrt{40}}} \\ & \text { '1.976' > } 1.555 \quad \text { (or ' }-1.976^{\prime}<-1.555 \text {) } \end{aligned}$ There is evidence that mean time has decreased.	B1 M1 M1 A1 4	Not just "mean time spent" For standardising. Allow $\div \frac{4.8}{40}$ Accept totals method; CV method. No mixed methods For valid comparison (area comparison $0.024<0.06)$ CWO. No contradictions in conclusions
(c)	Population normally distr so No	B1	Both needed
		Total: 10	

Page 6	Mark Scheme	Syllabus	Papē
	Cambridge International A Level - October/November 2014	9709	$\mathbf{7 2}$

6 (i)	$\begin{aligned} & \lambda=4.65 \\ & e^{-4.65} \times \frac{4.65^{4}}{4!} \\ & =0.186(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{ll} \mathrm{B} 1 & \\ \text { M1 } \\ \text { A1 } & 3 \end{array}$	Poisson $\mathrm{P}(X=4)$ with any λ
(ii)	$\begin{aligned} & \lambda=3.875 \\ & =e^{-3.875}\left(1+3.875+\frac{3.875^{2}}{2!}\right)=0.257(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1 3	$\mathrm{P}(X=0,1,2)$ Attempted, any λ As final answer
(iii)	$\begin{aligned} & \lambda=1.5 \\ & 1-e^{-1.5}\left(1+1.5+\frac{1.5^{2}}{2!}\right) \\ & =0.191(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1 3	$1-\mathrm{P}(X=0,1,2)$ Attempted, any λ As final answer
(iv)	He will reject H_{0}.	B1 1	
		Total: 10	

