Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	63

$1 \quad \begin{aligned} & z=-2.326 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \sigma=40-260 \\ & \sigma \end{aligned}=-2.326$	B1 M1 A1 3	$\pm 2.325 \text { to } \pm 2.33 \text { seen }$ Standardising and $=$ or $<$ their z, no cc, sq, sq rt Correct ans
2 (i) $\begin{aligned} & 0.7-2.4+2.2-0.5+6.3+4.9+0+0.3 \\ & =11.5 \end{aligned}$ (ii) $\begin{aligned} & \left(0.7^{2}+2.4^{2}+2.2^{2}+0.5^{2}+6.3^{2}+4.9^{2}+\right. \\ & \left.0.3^{2}\right) \\ & =75.13(75.1) \end{aligned}$ (iii) $\begin{aligned} & \text { mean }=63.4375 \\ & \text { Variance }=75.13 / 8-(11.5 / 8)^{2} \\ & =7.32 \\ & \text { OR mean }=507.5 / 8=63.4375 \\ & \operatorname{Var}=32253 / 8-63.4375^{2}=7.32 \end{aligned}$	B1 $\mathbf{1}$ B1 $\mathbf{1}$ B1 M1 A1 $\mathbf{3}$ B1 M1 A1	$\mathrm{ft} 62+$ their (i) $/ 8$ their(ii) $/ 8-((\mathrm{i}) / 8)^{2}$ correct answer subst in correct variance or standard deviation formula correct answer - allow 6.62, 6.93-7.04, 7.2607.325 Marks can be awarded in (i) or (ii) if not 'contradicted' by further working
3 (i) $\begin{aligned} & \max =12 \\ & \mathrm{P}(12)=(0.7)^{12}=0.0138 \end{aligned}$ $\text { (ii) } \begin{aligned} & \mathrm{P}(\text { fewer than } 10)=1-\mathrm{P}(10,11,12) \\ &=1-{ }^{12} \mathrm{C}_{10} \times(0.7)^{10}(0.3)^{2}-12 \times(0.7)^{11}(0.3) \\ &-(0.7)^{12} \\ &=1-0.2528 \\ &=0.747 \end{aligned}$	B1 B1 2 M1 A1 A1 3	(Implied by P(12) with power 12) Accept 0.014 Binomial term ${ }^{12} \mathrm{C}_{r}(0.7)^{r}(0.3)^{12-r}$ or ${ }^{12} \mathrm{C}_{r}(p)^{r}(q)^{12-r}, 0.99 \leqslant p+q \leqslant 1.00$ Correct unsimplified expression oe Correct answer

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	63

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	63

6 (a) $\begin{aligned} & 1^{* * * * * 3} \text { or } 3^{* * * * * 1} \text { or } 2 * * * * * 2 \\ & =6^{5} \times 3 \\ & =23328 \end{aligned}$ (b) W J H $\begin{array}{lll} 1 & 1 & 7={ }^{9}{ }^{9} \mathrm{C}_{1} \times{ }^{8} \mathrm{C}_{1} \times 1=72 \\ 1 & 7 & 1={ }^{9}{ }_{1} \times{ }^{\circ} \times{ }^{8} \mathrm{C}_{7} \times 1=72 \\ 7 & 1 & 1={ }^{9}{ }^{9} \mathrm{C}_{7} \times{ }^{2} \mathrm{C}_{1} \times 1=72 \\ 1 & 3 & 5={ }^{9} \mathrm{C}_{1} \times{ }^{8} \mathrm{C}_{3} \times 1=504 \text { mult by } 3! \\ 3 & 3 & 3={ }^{9} \mathrm{C}_{3} \times{ }^{6} \mathrm{C}_{3} \times 1=1680 \end{array}$ Total 4920 If no marks gained Listing all 10 different outcomes	$\begin{array}{ll} \text { M1 } \\ \text { M1 } \\ \text { A1 } & \mathbf{3} \\ & \\ \text { M1 } \\ \text { A1 } & \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } & \mathbf{6} \\ \text { SCM1 } \end{array}$	Mult by 6^{5} (for middle 5 dice outcomes) Mult by 3 or summing 3 different combinations (for end dice outcomes) Correct answer accept 23300 Multiplying 3 combinations (may be implied) 1 unsimplified correct answer ($72,504,1680$, 216 or 3024) A $2^{\text {nd }}$ unsimplified different correct answer Summing options for $1,1.7$ or $1,3,5$ oe (mult by 3 or 3!) Summing at least 2 different options of the 3 Correct ans If games replaced M1M1M1 max available If factorials used M0M1M1 max available
7 (a) (i) $\begin{aligned} & \mathrm{P}(X=3)=\mathrm{P}(\mathrm{GRR})+\mathrm{P}(\mathrm{RGR}) \\ & \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}+\frac{2}{4} \times \frac{2}{3} \times \frac{1}{2} \\ & \frac{1}{3} \mathbf{A G} \end{aligned}$ (ii) $\mathrm{P}(X=2)=\mathrm{P}(\mathrm{RR})=\frac{2}{4} \times \frac{1}{3}=\frac{1}{6}$ $\mathrm{P}(X=4)=1-\left(\frac{1}{6}+\frac{1}{3}\right)=\frac{1}{2}$ $\text { Or P(GGRR) }+\mathrm{P}(\text { RGGR })+$ P(GRGR) $=\left(\frac{2}{4} \times \frac{1}{3} \times \frac{2}{2} \times \frac{1}{1}\right) \times 3=\frac{1}{2}$	M1 M1 A1 3 B1 B1	Mult 3 probs Summing 2 options Correct working with appropriate justification and fraction sequencing Values 2, 3, 4 only in table Condone $X=0,1$ if $\mathrm{P}(\mathrm{X})=0$ stated One correct prob other than (i) Second correct prob ft 1 - their previous 2 probs

Page 7	Mark Scheme	Syllabusu	Papē
	Cambridge International AS/A Level - October/November 2014	9709	63

(iii) $\mathrm{P}(3$ orange \mid at least 2 O$)=$

$$
\frac{P(3 O)}{P(\text { at least } 2 O)}
$$

$$
\mathrm{P}(3 \text { orange })=\mathrm{P}(\mathrm{OOO})
$$

$$
=\frac{5}{7} \times \frac{4}{6} \times \frac{3}{5}=\frac{2}{7}
$$

$$
\mathrm{P}(\text { at least } 2 \mathrm{O})=\mathrm{P}(\mathrm{YOO})+\mathrm{P}(\mathrm{OYO})+
$$

$$
\mathrm{P}(\mathrm{OOY})+\frac{2}{7}
$$

$$
=\frac{2}{7} \times \frac{5}{6} \times \frac{4}{5}+\frac{5}{7} \times \frac{2}{6} \times \frac{4}{5}+\frac{5}{7} \times \frac{4}{6} \times \frac{2}{5}+\frac{2}{7}
$$

$$
=\frac{6}{7}
$$

$$
\mathrm{P}(30 \mid \text { at least } 2 \mathrm{O})=\frac{2}{7} \div \frac{6}{7}=\frac{1}{3}(0.333)
$$

Alternative 1

3 Orange $={ }^{5} \mathrm{C}_{3}$

At least 2 Orange $={ }^{5} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{3}$
$\mathrm{P}(3 \mathrm{O} \mid$ at least 2 O$)=\frac{{ }^{5} \mathrm{C}_{3}}{{ }^{5} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{3}}=\frac{1}{3}$

Alternative 2
No Yellow $={ }^{2} \mathrm{C}_{0}$

No more than 1 Yellow $={ }^{2} \mathrm{C}_{1}+{ }^{2} \mathrm{C}_{0}$
$\mathrm{P}(3 \mathrm{O} \mid$ at least 2 O$)=\frac{{ }^{2} \mathrm{C}_{0}}{{ }^{2} \mathrm{C}_{1}+{ }^{2} \mathrm{C}_{0}}=\frac{1}{3}$

Misread - with replacement
MR-1 applied to first Accuracy Mark earned
$\mathrm{P}(3 \mathrm{O})=\frac{5}{7} \times \frac{5}{7} \times \frac{5}{7}=\frac{125}{343}$
$\mathrm{P}($ at least 2 O$)=\frac{5}{7} \times \frac{5}{7} \times \frac{2}{7} \times{ }^{3} \mathrm{C}_{2}+\left(\frac{5}{7}\right)^{3}$
$\mathrm{P}(3 \mathrm{O} \mid$ at least 2 O$)=\frac{5}{11}$

Atttempt at $\mathrm{P}(\mathrm{OOO})$ one three-factor option, not added
Correct unsimplified num of a fraction

Attempt at P(at least 2O) sum 3 or 4 threefactor options
Correct unsimplified answer seen anywhere

Correct answer evaluated

Attempt at combinations for 3 orange oe, not added
Correct unsimplified num of a fraction
Attempt at combinations for at least 2 orange condone omission of $+{ }^{5} \mathrm{C}_{3}$
Correct unsimplified answer seen anywhere
Correct answer evaluated

Attempt at combinations for 0 yellow oe, not added
Correct unsimplified num of a fraction
Attempt at combinations for no more than 1 yellow. Condone omission of +2 C 0
Correct unsimplified answer seen anywhere
A1 5
Correct answer evaluated

Attempt at $\mathrm{P}(\mathrm{OOO})$ one three factor option oe not added
Correct unsimplified num of a fraction

Attempt at P (at least 2 O) sum of 3 or 4 three factor options
Correct unsimplified seen anywhere

Answer evaluated

