Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	62

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& 1 \quad{ }^{48} \mathrm{C}_{43} \\
\& \quad=1712304(1710000)
\end{aligned}
\] \& B1
\[
\text { B1 } 3
\] \& 48 seen in a single term combination oe 43 or 5 seen in a single term combination oe Both can be mult by integer \(k \geqslant 1\) Correct final answer \\
\hline \[
\begin{aligned}
2 \quad \text { (i) } \& 6!\times 5! \\
\& =86400
\end{aligned}
\]
\[
\text { (ii) } \begin{aligned}
\& 6!\times 7 \times 6 \times 5 \times 4 \\
\& =604800
\end{aligned}
\] \& \[
\begin{array}{ll}
\text { B1 } \\
\text { B1 } \& \\
\text { B1 } \& 3 \\
\& 3 \\
\text { B1 } \& \\
\text { B1 } \& \\
\text { B1 } \& 3
\end{array}
\] \& \begin{tabular}{l}
6! oe seen multiplied by integer \(k \geqslant 1\) \\
5 ! oe seen multiplied by integer \(k \geqslant 1\) \\
Correct final answer \\
6 ! seen mult by integer \(k \geqslant 1\) \\
Mult by \({ }^{7} \mathrm{P}_{4}\) oe \\
Correct final answer
\end{tabular} \\
\hline \begin{tabular}{l}
3 (i) 1112 or 1121 or 1211 or 2111
\[
\begin{aligned}
\& \text { Prob }=\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times 4 \\
\& =\frac{1}{324}(0.00309)
\end{aligned}
\] \\
(ii)
\[
\begin{aligned}
\& \left.\underset{{ }^{7}}{\mathrm{P}}(1,2)={ }^{7} \mathrm{C}_{1}(1 / 324)^{2} \times(323 / 324)\right)^{5}(323 / 324)^{6}+ \\
\& =0.0214
\end{aligned}
\]
\end{tabular} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { M1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { M1 }
\end{aligned}
\] \& \begin{tabular}{l}
One of 1112 seen \\
Mult a prob by 4 or \(\left(\frac{1}{6}\right)^{4} \times\) integer \(k \geqslant 1\) seen \\
Correct answer \\
Bin term \({ }^{7} \mathrm{C}_{x} p^{x}(q)^{7-x}, 0.99 \leqslant p+q \leqslant 1\) Using their \(p\) from (i) in a bin term Correct unsimplified answer Correct answer
\end{tabular} \\
\hline 4 (i) W = wrong, \(\mathrm{C}=\) correct \& M1

M1

B1 \& | 3 branches first qn and 2 by 2 for second qn only |
| :--- |
| One branch twice for third qn or two branches twice with 0 and 1 seen on branches |
| Any two of $\frac{1}{3}, \frac{1}{2}$ and 1 seen as probs | \\

\hline \& | A1 4 |
| :--- |
| M1 | \& | Probs all correct and sensible labels NB SR for 4 outcomes instead of 3, M1 B1 only |
| :--- |
| 2 branches first qn and 1 by 2 for second qn only | \\

\hline OR \& M1 \& One branch once for third qn or two branches with 0 and 1 seen on branches \\
\hline \& B1 \& Any two of $\frac{1}{3}$ or $\frac{2}{3}, \frac{1}{2}$ and 1 seen as probs Probs all correct and sensible labels \\
\hline
\end{tabular}

Page 5 Mark Scheme

Syllabus
Paper Cambridge International AS/A Level - October/November 2014

(ii)				B1 B1	$1,2,3$ seen only oe 2 correct probs
Prob	1	2	3		
	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$		
$\mathrm{P}(2)=\mathrm{P}(\mathrm{WC})=\frac{1}{6} \quad \mathrm{P}(\mathrm{WC})=\frac{1}{6} \text { total } \mathrm{P}(2)$					
$\mathrm{P}(3)=\mathrm{P}(\mathrm{WWC})=\frac{1}{6} \mathrm{P}(\mathrm{WWC})=$				B1	3 correct probs
$\frac{1}{6}$ total $\mathrm{P}(3)=\frac{1}{3}$					
$\mathrm{E}(X)=1 \times \frac{1}{3}+2 \times \frac{1}{3}+3 \times \frac{1}{3}=2$				B1ヶ4	Correct answer ft their probs provided $0.999 \leqslant \Sigma p \leqslant 1$
5 (a)	$\begin{aligned} & \mathrm{P}(x<8)=\mathrm{P}\left(z<\frac{8-7.15}{0.88}\right) \\ & =\Phi(0.9659) \\ & =0.833 \end{aligned}$			M1	Standardising \pm, no cc no sq rt no sq
				A1 2	Correct answer
(ii) $z=0.674$					Accept ± 0.674 or 0.675 only
$\frac{q-7.15}{0.0}=0.674$				M1	Standardised eqn $= \pm$ their z-value, allow sq or sq rt if already penalised in (i)
$q=7.74$				A1 3	Correct answer
(b) $\mathrm{P}(Y>4 \mu)=\mathrm{P}\left(z>\left(\frac{4 \mu-\mu}{(3 \mu / 2)}\right)\right)=\mathrm{P}(z>2)$			$=\mathrm{P}(z>2)$	M1 A1 A1 3	Standardising no sq rt, no cc, no sq, one variable $z= \pm 2$ seen correct ans SR B1 if made-up values used and 0.0228 obtained

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	62

6 (i)						B1	At least 4 CFs correct seen on graph
ht	<10.5	<15.5	<20.5	<25.5	<30.5		
CF	22	54	132	172	200		
$\text { cf } 200^{-} \uparrow$						B1	Labels correct, i.e. all of ht, cm, cf
100						M1	Attempt at upper end points either 10 or 10.5 or 11 at least 4 upper end points
	3.5	10.5	20.5	30.5	$\underset{\mathrm{ht}(\mathrm{~cm})}{\longrightarrow}$	A1 4	All correct, i.e. points joined up from (3.5, 0) to $(10.5,22)$....to $(30.5,200)$ Straight lines or curve
(ii)	$\begin{aligned} & 72 \% \text { le } \\ & h=22 . \end{aligned}$	$\begin{aligned} & \text { ss, i.e. } 14 \\ & 5 \mathrm{~cm} \end{aligned}$	less tha			$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	144 used can be implied single value in range 21 to 23 inclusive
	$\begin{aligned} & \mathrm{var}=\left(7^{2} \times 22+13^{2} \times 32+18^{2} \times 78+23^{2} \times 40\right. \\ & \left.+28^{2} \times 28\right) / 200-18.39^{2} \end{aligned}$					M1	Using mid points attempt 7 ± 0.5 in correct var formula incl - mean 2
	$=374.35-18.39^{2}$$=36.1579$					B1	At least 4 correct midpoints
	$\mathrm{sd}=6.01$						Correct ans
$7 \quad$ (i)	$\begin{aligned} & \mathrm{P}(4,5,6)=(0.75)^{4}(0.25)^{4} \times{ }^{8} \mathrm{C}_{4}+ \\ & (0.75)^{5}(0.25)^{3} \times{ }^{8} \mathrm{C}_{5}+(0.75)^{6}(0.25)^{2} \times{ }^{8} \mathrm{C}_{6} \end{aligned}$					M1	Bin term $p^{r}(1-p)^{8-r} \times^{8} \mathrm{C}_{r}$ seen any p
						M1	Correct unsimplified answer
	$=0.606$					A1 3	Correct ans
	$n p=160 \times 0.75=120 \quad n p q=30$					B1	Unsimplified mean and var correct
	$\begin{aligned} & \mathrm{P}(>114)=\mathrm{P}\left(z>\left(\frac{114.5-120}{\sqrt{30}}\right)\right) \\ & =\mathrm{P}(z>-1.004) \end{aligned}$					M1 M1 M1	Standardising, need sq rt Cont correction either 114.5 or 113.5
						M1	Correct area consistent with their working
	$=\Phi(1.004)=0.842$					A1 5	Correct ans
	$n p$ and $n q$ both >5					B1 1	Need both

