Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	43

1 (i)	$\begin{aligned} & \mathrm{DF}=P \div 18 \\ & {[P \div 18-800=1400 \times 0.5]} \\ & P=27000 \end{aligned}$	B1 M1 A1	3	For using DF-R=ma
(ii)	$[1080-800=1400 a]$ Acceleration is $0.2 \mathrm{~ms}^{-2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For using $\mathrm{DF}=P \div 25$ and DF $-R=m a$
2	$\begin{aligned} & 0.65 \times 10 \times(63 / 65)-T=0.65 a \text { or } \\ & T-0.65 \times 10 \times(16 / 65)=0.65 a \\ & T-0.65 \times 10 \times(16 / 65)=0.65 a \text { or } \\ & 0.65 \times 10 \times(63 / 65)-T=0.65 a \text { or } \\ & 0.65 \times 10 \times(63-16) / 65=2 \times 0.65 a \\ & {[T-1.6=6.3-T] \text { or }} \\ & {[T=6.3-0.65 \times(47 / 13)] \text { or }} \\ & \quad[T=1.6+0.65 \times(47 / 13)] \end{aligned}$ Tension is 3.95 N	M1 A1 B1 M1 A1	5	For applying Newton's 2nd law to P or to Q For eliminating a
3 (i)	$\begin{aligned} & {[W \cos \alpha+7 \times 0.6=8]} \\ & W \cos \alpha=3.8(\mathrm{cwo}) \\ & W \sin \alpha=5.6 \end{aligned}$	M1 A1 B1	3	For resolving forces acting at O vertically AG
(ii)	$\begin{aligned} & W=6.77 \text { or } \alpha=55.8 \\ & \alpha=55.8 \text { or } W=6.77 \end{aligned}$	M1 A1 B1	3	For using $W^{2}=(W \sin \alpha)^{2}+(W \cos \alpha)^{2}$ or $\tan \alpha=(W \sin \alpha \div W \cos \alpha)$
4 (i)	$\begin{aligned} & v(8)=0.25 \times 8=2 \\ & 2=-6.4+19.2-k \rightarrow k=10.8 \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{~B} 15 \end{gathered}$	2	$\mathrm{ft}(12.8-v)$
(ii)	$\begin{aligned} & {[\mathrm{d} v / \mathrm{d} t=-0.2 t+2.4(=0 \text { when } t=12)} \\ & \left.\mathrm{v}_{\max }=-0.1 \times 144+2.4 \times 12-10.8\right] \end{aligned}$ Maximum speed is $3.6 \mathrm{~ms}^{-1}$	M1 A1^	2	For finding t when $\mathrm{d} v / \mathrm{d} t=0$ and substituting into $v(t)$ $\mathrm{ft}(14.4-\operatorname{incorrect} k)$

Page 5	Mark Scheme	Syllabusu	Papē
	Cambridge International AS/A Level - October/November 2014	9709	43

(iii)	Displacement $s_{1}=1 / 20.25 \times 8^{2} \quad(=8)$ [Displacement $s_{2}=\left[-0.1 t^{3} / 3+1.2 t^{2}-10.8 t\right]_{8}^{18}$ (=26.7)] Displacement is 34.7 m	B1 M1 A1	3	For using displacement $s_{2}=\int_{8}^{88}\left(-0.1 t^{2}+2.4 t-10.8\right) \mathrm{d} t$
5	$\left[\begin{array}{l} {\left[P-8 g \sin 5^{\circ}-F=8 a\right]} \\ 7 X-8 g \sin 5^{\circ}-F=8 \times 0.15 \text { and } \\ \quad 8 X-8 g \sin 5^{\circ}-F=8 \times 1.15 \\ X=8 \\ \\ \\ F=56-8 g \sin 5^{\circ}-8 \times 0.15 \text { or } \\ F=64-8 g \sin 5^{\circ}-8 \times 1.15 \text { or } \\ F=56 \times 1.15-64 \times 0.15-8 g \sin 5^{\circ} \text { or } \\ F=47.8(275 \ldots) \\ \\ R=8 g \cos 5^{\circ} \quad \quad(=79.695 \ldots) \\ {[\mu=47.8 \div 79.7] \quad} \end{array}\right.$ Coefficient is 0.600 (accept 0.6)	M1 A1 A1 M1 A1ヶ B1 M1 A1	8	For using Newton's $2^{\text {nd }}$ law (either case) For obtaining a numerical expression for F $\mathrm{ft} X$ either from error for one term in X / F equation or from error in solution of correct X / F equations For using $\mu=\frac{F}{R}$
6 (i)	Acceleration is $4 \mathrm{~ms}^{-2}$ For $T-m g=4 m$ and $(1-m) g-T=$ 4($1-m$) or $4=(1-m-m) g$ P has mass 0.3 kg and Q has mass 0.7 kg	M1 A1 M1 A1 A1	5	For using the gradient property for acceleration For applying Newton's $2^{\text {nd }}$ law to both particles or using the formula $(M+m) a=(M-m) g$ and for using $m+M=1$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	43

(ii)	For using the area property of the graph or $h=1 / 2 a t^{2}$ to obtain $h=2$	B1	1	
(iii)	Distance travelled upwards by $P=1 / 21.4 \times 4$ Height is 4.8 m	B1 B1	2	
$7 \quad$ (i)	$\begin{aligned} & 4^{2}=0^{2}+2 a \times 12.5 \rightarrow a=0.64 \\ & {[35 \times 0.96-3 g \times 0.6-F=3 \times 0.64]} \\ & F=13.68 \end{aligned}$ WD against $F=13.68 \times 12.5=171 \mathrm{~J}$	B1 M1 A1 B1	4	For using Newton's $2^{\text {nd }}$ law to find F
(ii)	$\begin{aligned} & \mathrm{R}_{\text {from O to } \mathrm{A}}=3 g \times 0.8-35 \times 0.28 \\ & {[\mu=13.68 \div 14.2(=0.96338)]} \end{aligned}$ Coefficient is 0.963 (accept 0.96)	B1 M1 A1	3	For using $\mu=F \div R$
(iii)	$[-3 g \times 0.6-0.96338 \times(3 g \times 0.8)=3 a]$ Acceleration is $-13.7 \mathrm{~ms}^{-2}$ $[0=16+2(-13.7) s]$ Distance travelled is 0.584 m	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	For applying Newton's $2^{\text {nd }}$ law to the block to find a For using $v^{2}=u^{2}+2 a s$ to find s
Alternative for part (i)				
(i)	Gain in $\mathrm{KE}=1 / 23 \times 4^{2}(=24 \mathrm{~J})$ Gain in $\mathrm{PE}=3 g \times 12.5 \times 0.6(=225 \mathrm{~J})$ $\begin{array}{r} {\left[\mathrm{WD}=35 \times 12.5 \times 0.96-1 / 23 \times 4^{2}-\right.} \\ 3 g \times 12.5 \times 0.6] \end{array}$ WD against F is 171 J	B1 B1 M1 A1	4	For using WD against F $=\mathrm{WD}$ by applied force -KE gain -PE gain
Alternative for part (iii)				
	$\text { WD against } F=0.96(338 . .) \times 3 g \times 0.8 s$ $1 / 23 \times 4^{2}=3 g s(0.6)+0.96(338 . .) \times 3 g \times 0.8 s$ Distance travelled is 0.584 m	B1 M1 A1 A1	4	For using KE loss $=$ PE gain + WD against friction

