						9709_w	<u>14_ms_4</u> 3
F	Page	4 Mark Scheme					Paper
Cambridge International AS/A Level – October/November 2014 9709 43							43
1	(i)	$DF = P \div 18$	B1				
		$[P \div 18 - 800 = 1400 \times 0.5]$	M1		For using $DF - R$	a = ma	
		<i>P</i> = 27000	A1	3			
	(ii)	[1080 - 800 = 1400a]	M1		For using $DF = P$	$P \div 25$ and D	F - R = ma
		Acceleration is $0.2 \mathrm{ms}^{-2}$	A1	2			
2			M1		For applying Nev Q	vton's 2nd la	w to P or to
		$0.65 \times 10 \times (63/65) - T = 0.65a$ or $T - 0.65 \times 10 \times (16/65) = 0.65a$	A1				
		$T - 0.65 \times 10 \times (16/65) = 0.65a$ or $0.65 \times 10 \times (63/65) - T = 0.65a$ or $0.65 \times 10 \times (63 - 16)/65 = 2 \times 0.65a$	B1				
		$[T-1.6 = 6.3 - T] \text{ or} [T = 6.3 - 0.65 \times (47/13)] \text{ or} [T = 1.6 + 0.65 \times (47/13)]$	M1		For eliminating <i>a</i>	,	
		Tension is 3.95 N	A1	5			
3	(i)	$[W\cos\alpha + 7 \times 0.6 = 8]$	M1		For resolving for	ces acting at	O vertically
		$W\cos\alpha = 3.8$ (cwo)	A1		AG		
		$W \sin \alpha = 5.6$	B1	3			
	(ii)				For using $W^2 = (W \sin \alpha)^2 + (W \cos \alpha)^2$		
			M1		or tana – (W sina	· WCOSa)	
		$W = 6.77$ or $\alpha = 55.8$	A1				
		$\alpha = 55.8 \text{ or } W = 6.77$	B1	3			
4	(i)	$v(8) = 0.25 \times 8 = 2$	B1				
		$2 = -6.4 + 19.2 - k \Rightarrow k = 10.8$	B1√^	2	ft (12.8 – v)		
	(ii)	[dv/dt = -0.2t + 2.4 (= 0 when t = 12)] v _{max} = -0.1 × 144 + 2.4 × 12 - 10.8]	M1		For finding <i>t</i> whe $dv/dt = 0$ and sub	en stituting into	<i>v</i> (<i>t</i>)
		Maximum speed is $3.6 \mathrm{ms}^{-1}$	A1√^	2	ft (14.4 – incorrec	ct <i>k</i>)	

Daga	5 Mark Saba	9709 w14 ms 43					
Page	Cambridge International AS/A Leve	9709	43				
					5705	ŦŬ	
(iii)	Displacement $s_1 = \frac{1}{2} 0.25 \times 8^2$ (= 8)	B1					
	[Displacement $s_2 = [-0.1t^3/3 + 1.2t^2 - 10.8t]_8^{18}$ (=26.7)]	M1		For using displacement $s_2 = \int_{8}^{18} (-0.1t^2 + 2.4t - 10.8) dt$			
	Displacement is 34.7 m	A1	3				
5	$[P - 8g\sin 5^\circ - F = 8a]$	M1		For using Newton	ng Newton's 2 nd law (either case)		
	$7X - 8g\sin 5^{\circ} - F = 8 \times 0.15$ and $8X - 8g\sin 5^{\circ} - F = 8 \times 1.15$	A1					
	<i>X</i> = 8	A1					
		M1		For obtaining a numerical expression <i>F</i>			
	$F = 56 - 8g\sin 5^{\circ} - 8 \times 0.15 \text{ or}$ $F = 64 - 8g\sin 5^{\circ} - 8 \times 1.15 \text{ or}$ $F = 56 \times 1.15 - 64 \times 0.15 - 8g\sin 5^{\circ} \text{ or}$ F = 47.8(275)	5 or 5 or - $8g\sin 5^{\circ}$ or $A1\sqrt{*}$ A1 $\sqrt{*}$ A1		rror for one t error in solu ions	term in X/F tion of		
	$R = 8g\cos 5^{\circ}$ (= 79.695)	B1					
	$[\mu = 47.8 \div 79.7]$	M1		For using $\mu = \frac{F}{R}$			
	Coefficient is 0.600 (accept 0.6)	A1	8				
6 (i)		M1		For using the grad acceleration	using the gradient property for eleration		
	Acceleration is 4 ms ⁻²	A1					
		M1		For applying New particles or using (M+m)a = (M-and for using m+b)	$\begin{array}{l} \text{vton's } 2^{\text{nd}} \text{ law} \\ \text{the formula} \\ -m)g \\ -M=1 \end{array}$	v to both	
	For $T - mg = 4m$ and $(1 - m)g - T = 4(1 - m)$ or $4 = (1 - m - m)g$	A1					
	P has mass 0.3 kg and Q has mass 0.7 kg	A1	5				

		9709_w14_ms_4					
Page	6 Mark Sche	Syllabus	Paper				
	Cambridge International AS/A Leve			lovember 2014	9709	43	
(ii)	For using the area property of the graph or $h = \frac{1}{2} at^2$ to obtain $h = 2$	B1	1				
(iii)	Distance travelled upwards by $P = \frac{1}{2} 1.4 \times 4$	B1					
	Height is 4.8 m	B1	2				
7 (i)	$4^2 = 0^2 + 2a \times 12.5 \Rightarrow a = 0.64$	B1					
	$[35 \times 0.96 - 3g \times 0.6 - F = 3 \times 0.64]$	M1		For using Newton	wton's 2^{nd} law to find F		
	F = 13.68	A1					
	WD against $F = 13.68 \times 12.5 = 171 \text{ J}$	B1	4				
(ii)	$\mathrm{R_{from\ O\ to\ A}}=3g imes0.8-35 imes0.28$	B1					
	$[\mu = 13.68 \div 14.2 \ (= 0.96338)]$	M1		For using $\mu = F \neq$	÷ R		
	Coefficient is 0.963 (accept 0.96)	A1	3				
(iii)	$[-3g \times 0.6 - 0.96338 \times (3g \times 0.8) = 3a]$	M1		For applying Newton's 2^{nd} law to the block to find <i>a</i>			
	Acceleration is $-13.7 \mathrm{ms}^{-2}$	A1					
	[0 = 16 + 2(-13.7)s]	M1		For using $v^2 = u^2$	+2as to find	S	
	Distance travelled is 0.584 m	A1	4				
	Alternative for part (i)						
(i)	Gain in KE = $\frac{1}{2} 3 \times 4^2$ (= 24 J)	B1					
	Gain in PE = $3g \times 12.5 \times 0.6$ (= 225 J)	B1					
	$[WD = 35 \times 12.5 \times 0.96 - \frac{1}{2} \times 3 \times 4^{2} - 3g \times 12.5 \times 0.6]$	M1		For using WD ag = WD by applied gain	ainst F force – KE g	gain – PE	
	WD against F is 171 J	A1	4				
	Alternati						
	WD against $F = 0.96(338) \times 3g \times 0.8s$	B1					
		M1		For using KE los against friction	s = PE gain +	WD	
	$\frac{1}{2} 3 \times 4^2 = 3gs(0.6) + 0.96(338) \times 3g \times 0.8s$	A1					
	Distance travelled is 0.584 m	A1	4				