Dago /	Mark Schoma	9709_w	14 ms 42						
raye 4	Cambridge International AS/A Level – O	9709	42						
1 (i)	[-11 = 11 - 10t]	M1		For using $v = u - gt$ (or equivalent method) to find the duration of motion					
	Time after projection is 2.2 seconds	A1	2						
(ii)	$h = 0 + \frac{1}{2}g \times 2.2^2 = 24.2$	B1√^							
	$V = 0 + g \times 2.2 = 22$	B1√^	2						
2 (i)	$[X = 25 \times 0.96 - 30 \times 0.8 = 0]$	M1		For resolving forces in the <i>x</i> direction					
	Component in <i>x</i> -direction is zero	A1	2	AG					
(ii)	$[Y = 25 \times 0.28 - 20 + 30 \times 0.6 = 5]$	M1		For resolving forces in the <i>y</i> direction					
	Resultant has magnitude 5 N and acts in the positive <i>y</i> direction	A1	2						
(iii)	Replacement has magnitude 30 N and acts in the –ve <i>y</i> direction	B1	1						
3 (i)	$[v_B = 1.2 \times 28 \div 0.96]$	M1		For using <i>I</i> 1.2 and 0.9 only	P = Fv and the formula of Fv and an equivalent of Fv and F	the factors ation in v_B			
	Speed of the train at <i>B</i> is $35 \mathrm{ms}^{-1}$	A1	2	AG					
(ii)	KE increase = $100000(35^2 - 28^2)$	B1							
	WD by engine = $44.1 \times 10^6 + 2.3 \times 10^6 $ J	M1		For using WD by engine = KE increase + WD against resistance		e = KE resistance			
	Work done is 46400 kJ or 46.4×10^6 J	A1	3	or 464000)00 J				
4 (i)	$[X\cos 30^\circ = 40\cos 60^\circ]$	M1		For resolvi	ng forces ho	rizontally			
	$X = 23.1 (= 40 / \sqrt{3})$	A1	2						
(ii)	$[X\cos 30^{\circ} - 10 = 40\cos 60^{\circ}]$	M1		For resolvi	ng forces ho	rizontally			
	$X = 60 \div \sqrt{3} \text{ or } 34.6$	A1							
	$[R + X\sin 30^\circ + 40\sin 60^\circ = 15g]$	M1		For resolvi $(R = 98.03)$	ng forces ver 8)	tically			
	$[\mu = 10 \div (150 - 30/\sqrt{3} - 20\sqrt{3})]$	M1		For using <i>I</i>	$F = \mu R$				
	Coefficient is 0.102	A1	5						

P	age 5	age 5 Mark Scheme						<u>14 ms 42</u> Paper	
		C	Cambridge International AS/A Level -	- October/	/Noven	nber 2014	9709	42	
			[1				
5	(i)	(a)	$[F = 0.7 \times 3, WD = 2.1 \times 0.9]$	M1		For using <i>I</i>	VD = Fs		
			Work done is 1.89 J	A1	2				
		(b)	Loss of $PE = 3 \times 0.9 = 2.7 J$	B1	1				
		(c)	[KE gain = 2.7 – 1.89]	M1		For 'gain in KE = loss in PE – WD by friction'			
			Gain in KE = 0.81 J	Al	2				
	(ii)		$\frac{1}{2}(0.3 + 0.3)v_{\text{at break}}^2 = 0.81$]	M1		For using $\frac{1}{2}(m_A + m_B)v^2 = \text{gain in}$ KE			
			$v_{\rm floor}^2 = v_{\rm at \ break}^2 + 2g \times 0.54$	M1		For using $v^2 = u^2 + 2gs$			
			Speed at the floor is $3.67 \mathrm{ms}^{-1}$	A1	3				
	Alternative method for (i) (c) and (ii)								
		(c)	[T-2.1 = 0.3a and 3 - T = 0.3a] $\rightarrow a = 1.5]$ $[v^2 = 2 \times 1.5 \times 0.9 = 2.7]$	M1		For applying Newton's 2^{nd} law to both particles and finding <i>a</i> and using $v^2 = 0 + 2as$ and attempting KE			
			$KE = 0.5 \times (0.3 + 0.3) \times 2.7 = 0.81 \text{ J}$	A1	2				
	(ii)		$\left[v_{\text{at break}}^2 = 2.7\right]$	M1		For using their v^2 in (i)(c) as $v_{\text{at break}}^2$			
			$v_{\rm floor}^2 = v_{\rm at \ break}^2 + 2g \times 0.54$	M1		For using $v^2 = u^2 + 2gs$			
			Speed at floor = 3.67ms^{-1} (= $1.5 \sqrt{6}$)	A1	3				
	Alternative method for (ii)								
	(ii)		$[0.3 \times g \times 0.54]$ or $[\frac{1}{2} \times 0.3 \times (v^2 - 2.7)]$	M1		For attemp for the falli	ting PE loss ing particle o	or KE gain nly	
			$[1.62 = \frac{1}{2} \times 0.3 \times (v^2 - 2.7)]$	M1		For using F particle	PE loss = KE	gain of this	
			Speed at floor = $3.67 \mathrm{ms}^{-1}$ (= $1.5\sqrt{6}$)	A1	3				
6	(i)	(a)	(a) Acceleration is $2.8 \mathrm{ms}^{-2}$	B1		Using acce	leration $= g$	$\sin \alpha$	
		(b)	$[mg \times 0.28 - 0.5mg \times 0.96 = ma]$	M1		For using N	Newton's 2 nd	law	
			Acceleration is -2 ms^{-2}	A1	3				

					<u>9709 w</u>	<u>14 ms 4</u> 2		
Page 6	Mark Scheme	Syllabus	Paper					
	Cambridge International AS/A Level – October/November 2014					42		
(ii)		M1		For using $v^2 = u^2 + 2as$ for AB and for BC and using $AB + BC = 5$				
	$v_B^2 = 2 \times 2.8(AB)$ and $2^2 = 5.6(AB) - 2 \times 2(5 - AB)$	A1√ [^]		ft incorrect answers in (i)				
	Distance is 2.5 m	A1	3					
Alternative method for (ii)								
	$[mg \times 5 \times 0.28 = \frac{1}{2} m 2^{2} + \mu \times mg \times 0.96 \times BC]$	M1		For using Loss in PE = Gain in KE + WD against Friction for the motion from A to C				
	$14 = 2 + 4.8 \times BC$	A1		Correct equation				
	$BC = 12/4.8 = 2.5 \mathrm{m}$	A1	3					
(iii)		M1		For using $t = 2s \div (u + v)$ for AB and BC				
	$T = 2 \times 2.5 \div (0 + \sqrt{14}) + 2 \times 2.5 \div (\sqrt{14} + 2)$	A1						
	Time taken is 2.21 s	A1	3					
7 (i)	v = -4.8	B1						
	$[\pm 4.8 = 3a]$	M1		For using $v = 0 + at$				
	Magnitude of acceleration is 1.6 ms ⁻²	A1	3					
(ii)	[-0.4t + 4 (= 0 when t = 10)]	M1		For finding the value of <i>t</i> when $dv/dt = 0$				
		M1		For evaluat graph exclut $v(10)$ as v_m	ting $v(10)$ as udes the poss in)	<i>v</i> _{max} (the ibility of		
	$v_{\text{max}} = -0.2 \times 100 + 4 \times 10 - 15 \rightarrow$ Maximum velocity is 5 ms ⁻¹	A1	3					
(iii) (a)	Distance 0 to $3 \text{ s} = \frac{1}{2} \times 3 \times 4.8 \ (= 7.2)$	B1						
	Distance 3 to 5s = $-\int_{3}^{5} (-0.2t^{2} + 4t - 15) dt$	M1		Attempt to integrate and use limits				
	Distance = $\pm 4.5333m$	A1						
	Average speed = $(7.2 + 4.533) \div 5$ = 2.35 ms ⁻¹	B1						

Page 7	Page 7 Mark Scheme					Paper 42
Cambridge International AS/A Level – October/November 2014						42
(b)	(b) Distance BC $= \left[-\frac{0.2t^{3}}{3} + 2t^{2} - 15t \right] \frac{15}{5}$ and Av speed = $(AB + BC) \div 15$ Av speed = $(45, 066 \div 15) = 3, 00 \text{ ms}^{-1}$		6	ft for errors expression	in coefficien	nts in cubic