Page 4	Mark Scheme	Syllabusus	Paper
	Cambridge International AS/A Level - October/November 2014	9709	42

1 (i)	$[-11=11-10 t]$ Time after projection is 2.2 seconds	M1 A1	2	For using $v=u-g t$ (or equivalent method) to find the duration of motion
(ii)	$\begin{aligned} & h=0+1 / 2 g \times 2.2^{2}=24.2 \\ & V=0+g \times 2.2=22 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \hat{\downarrow} \\ & \mathrm{~B} 1 \hat{\downarrow} \end{aligned}$	2	
2 (i)	$[X=25 \times 0.96-30 \times 0.8=0]$ Component in x-direction is zero	M1 A1	2	For resolving forces in the x direction AG
(ii)	$[Y=25 \times 0.28-20+30 \times 0.6=5]$ Resultant has magnitude 5 N and acts in the positive y direction	M1 A1	2	For resolving forces in the y direction
(iii)	Replacement has magnitude 30 N and acts in the $-\mathrm{ve} y$ direction	B1	1	
3 (i)	$\left[v_{B}=1.2 \times 28 \div 0.96\right]$ Speed of the train at B is $35 \mathrm{~ms}^{-1}$	M1 A1	2	For using $P=F v$ and the factors 1.2 and 0.96 and an equation in v_{B} only AG
(ii)	KE increase $=100000\left(35^{2}-28^{2}\right)$ WD by engine $=44.1 \times 10^{6}+2.3 \times 10^{6} \mathrm{~J}$ Work done is 46400 kJ or $46.4 \times 10^{6} \mathrm{~J}$	B1 M1 A1	3	For using WD by engine $=$ KE increase + WD against resistance or 46400000 J
4 (i)	$\begin{aligned} & {\left[X \cos 30^{\circ}=40 \cos 60^{\circ}\right]} \\ & X=23.1(=40 / \sqrt{ } 3) \end{aligned}$	M1 A1	2	For resolving forces horizontally
(ii)	$\left[X \cos 30^{\circ}-10=40 \cos 60^{\circ}\right]$ $X=60 \div \sqrt{ } 3 \text { or } 34.6$ $\left[R+X \sin 30^{\circ}+40 \sin 60^{\circ}=15 g\right]$ $[\mu=10 \div(150-30 / \sqrt{3}-20 \sqrt{ } 3)]$ Coefficient is 0.102	M1 A1 M1 M1 A1	5	For resolving forces horizontally For resolving forces vertically ($R=98.038$) For using $F=\mu R$

Page 5	Mark Scheme	Syllabus	Papē
	Cambridge International AS/A Level - October/November 2014	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

5 (i) (a)	$[F=0.7 \times 3, \mathrm{WD}=2.1 \times 0.9]$ Work done is 1.89 J	M1 A1	2	For using $F=\mu R$ and $\mathrm{WD}=F s$
(b)	Loss of PE $=3 \times 0.9=2.7 \mathrm{~J}$	B1	1	
(c)	$[\mathrm{KE} \text { gain }=2.7-1.89]$ Gain in $\mathrm{KE}=0.81 \mathrm{~J}$	M1 A1	2	For 'gain in $\mathrm{KE}=$ loss in $\mathrm{PE}-\mathrm{WD}$ by friction'
(ii)	$\left.1 / 2(0.3+0.3) v_{\text {at break }}{ }^{2}=0.81\right]$ $v_{\text {floor }}{ }^{2}=v_{\text {at break }}{ }^{2}+2 g \times 0.54$ Speed at the floor is $3.67 \mathrm{~ms}^{-1}$	M1 M1 A1	3	For using $1 / 2\left(m_{A}+m_{B}\right) v^{2}=$ gain in KE For using $v^{2}=u^{2}+2 g s$
Alternative method for (i) (c) and (ii)				
(c)	$\begin{aligned} & {[T-2.1=0.3 a \text { and } 3-T=0.3 a} \\ & \vec{~} \quad a=1.5] \\ & {\left[v^{2}=2 \times 1.5 \times 0.9=2.7\right]} \end{aligned}$ $\mathrm{KE}=0.5 \times(0.3+0.3) \times 2.7=0.81 \mathrm{~J}$	M1 A1	2	For applying Newton's $2^{\text {nd }}$ law to both particles and finding a and using $v^{2}=0+2$ as and attempting KE
(ii)	$\left[v_{\text {at break }}^{2}=2.7\right]$ $v_{\text {floor }}^{2}=v_{\text {at break }}{ }^{2}+2 g \times 0.54$ Speed at floor $=3.67 \mathrm{~ms}^{-1}(=1.5 \sqrt{ } 6)$	M1 M1 A1	3	For using their v^{2} in (i)(c) as $v_{\text {at break }}{ }^{2}$ For using $v^{2}=u^{2}+2 g s$
Alternative method for (ii)				
(ii)	$\begin{aligned} & {[0.3 \times g \times 0.54] \text { or }\left[1 / 2 \times 0.3 \times\left(v^{2}-2.7\right)\right]} \\ & {\left[1.62=1 / 2 \times 0.3 \times\left(v^{2}-2.7\right)\right]} \\ & \text { Speed at floor }=3.67 \mathrm{~ms}^{-1}(=1.5 \sqrt{ } 6) \end{aligned}$	M1 M1 A1	3	For attempting PE loss or KE gain for the falling particle only For using PE loss $=$ KE gain of this particle
6 (i) (a)	(a) Acceleration is $2.8 \mathrm{~ms}^{-2}$	B1		Using acceleration $=g \sin \alpha$
(b)	$[\mathrm{mg} \times 0.28-0.5 \mathrm{mg} \times 0.96=\mathrm{ma}]$ Acceleration is $-2 \mathrm{~ms}^{-2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	For using Newton's $2^{\text {nd }}$ law

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

(ii)	$\begin{aligned} & v_{B}^{2}=2 \times 2.8(A B) \text { and } \\ & \quad 2^{2}=5.6(A B)-2 \times 2(5-A B) \end{aligned}$ Distance is 2.5 m	M1 A1 ${ }^{\wedge}$ A1	3	For using $v^{2}=u^{2}+2 a s$ for $A B$ and for $B C$ and using $A B+B C=5$ ft incorrect answers in (i)
Alternative method for (ii)				
	$\begin{aligned} & \begin{array}{l} {\left[m g \times 5 \times 0.28=1 / 2 m 2^{2}+\right.} \\ \mu \times m g \times 0.96 \times B C] \end{array} \\ & 14=2+4.8 \times B C \\ & B C=12 / 4.8=2.5 \mathrm{~m} \end{aligned}$	M1 A1 A1	3	For using Loss in $\mathrm{PE}=$ Gain in KE + WD against Friction for the motion from A to C Correct equation
(iii)	$T=2 \times 2.5 \div(0+\sqrt{ } 14)+2 \times 2.5 \div(\sqrt{ } 14+2)$ Time taken is 2.21 s	M1 A1 A1	3	For using $t=2 s \div(u+v)$ for $A B$ and $B C$
$7 \quad$ (i)	$\begin{aligned} & v=-4.8 \\ & {[\pm 4.8=3 a]} \end{aligned}$ Magnitude of acceleration is $1.6 \mathrm{~ms}^{-2}$	B1 M1 A1	3	For using $v=0+a t$
(ii)	$[-0.4 t+4(=0 \text { when } t=10)]$ $v_{\max }=-0.2 \times 100+4 \times 10-15 \rightarrow$ Maximum velocity is $5 \mathrm{~ms}^{-1}$	M1 M1 A1	3	For finding the value of t when $\mathrm{d} v / \mathrm{d} t=0$ For evaluating $v(10)$ as $v_{\text {max }}$ (the graph excludes the possibility of $v(10)$ as $v_{\text {min }}$)
(iii) (a)	Distance 0 to $3 \mathrm{~s}=1 / 2 \times 3 \times 4.8(=7.2)$ Distance 3 to $5 \mathrm{~s}=-\int_{3}^{5}\left(-0.2 t^{2}+4 t-15\right) \mathrm{d} t$ Distance $= \pm 4.5333 \ldots \mathrm{~m}$ Average speed $=(7.2+4.533) \div 5$ $=2.35 \mathrm{~ms}^{-1}$	B1 M1 A1 B1		Attempt to integrate and use limits

Page 7	Mark Scheme	Syllabusu	Pape \bar{r}
	Cambridge International AS/A Level - October/November 2014	9709	42

| (b)Distance $B C$
 $=\left[-\frac{0.2 t^{3}}{3}+2 t^{2}-15 t\right]$15
 5
 and
 Av speed $=(A B+B C) \div 15$
 Av speed $=(45.066 \div 15)=3.00 \mathrm{~ms}^{-1}$
 A 1 | M 1 | 6 | ft for errors in coefficients in cubic
 expression |
| :---: | :--- | :---: | :---: | :--- |

