Paper

Syllabus

	uge -		ridge International A Level – October/November 2014	9709	32	
1	Obt		ogarithm of a power linear equation in any form, e.g. $x = (x-2) \ln 3$ = 22.281		M1 A1 A1	[3]
2	(i)	-	oly ordinates 2, 1.1547, 1, 1.1547 formula, or equivalent, with $h = \frac{1}{6}\pi$ and four ordinates wer 1.95		B1 M1 A1	[3]
	(ii)	_	emisable sketch of $y = \csc x$ for the given interval tement that the estimate will be an overestimate		B1 B1	[2]
3	and Sub Obt Solv	obtain a correstitute $x = 2$			B1 M1 A1 M1 A1	[5]
4	(i)	Obtain either $Use \frac{dy}{dx} = \frac{dy}{dx}$	tule correctly at least once $\operatorname{er} \frac{dx}{dt} = \frac{3\sin t}{\cos^4 t} \text{ or } \frac{dy}{dt} = 3\tan^2 t \sec^2 t \text{ , or equivalent}$ $\frac{dy}{dt} \div \frac{dx}{dt}$ given answer		M1 A1 M1 A1	[4]
	(ii)	Use Pythag	ect equation for the tangent in any form oras given answer		B1 M1 A1	[3]
5	(i)	EITHER:	= 1 + i and obtain $w = \frac{1+2i}{1+i}$ Multiply numerator and denominator by the conjugate of the denominator equivalent Simplify numerator to 3 + i or denominator to 2 Obtain final answer $\frac{3}{2} + \frac{1}{2}i$, or equivalent	ninator,	B1 M1 A1 A1	
		OR:	Obtain two equations in x and y , and solve for x or for y Obtain $x = \frac{3}{2}$ or $y = \frac{1}{2}$, or equivalent Obtain final answer $\frac{3}{2} + \frac{1}{2}i$, or equivalent		M1 A1	[4]
			2 2 2		111	[ד]

Mark Scheme

Page 4

			
Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	32

(ii) EITHER: Substitute w = z and obtain a 3-term quadratic equation in z,

OR:

e.g.
$$iz^2 + z - i = 0$$

Solve a 3-term quadratic for z or substitute z = x + iy and use a correct

method to solve for x and y M1

Substitute w = x + iy and obtain two correct equations in x and y by equating real and imaginary parts

B1

Solve for x and y

M1

Obtain a correct solution in any form, e.g. $z = \frac{-1 \pm \sqrt{3} i}{2i}$ A1

Obtain final answer $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$ A1 [4]

- 6 (i) Integrate and reach $bx\ln 2x c \int x \cdot \frac{1}{x} dx$, or equivalent M1*
 - Obtain $x \ln 2x \int x \cdot \frac{1}{x} dx$, or equivalent

Obtain integral $x \ln 2x - x$, or equivalent

Substitute limits correctly and equate to 1, having integrated twice

Obtain a correct equation in any form, e.g. $a \ln 2a - a + 1 - \ln 2 = 1$ Obtain the given answer

A1

[6]

- (ii) Use the iterative formula correctly at least once
 Obtain final answer 1.94
 Show sufficient iterations to 4 d.p. to justify 1.94 to 2d.p. or show that there is a sign change in the interval (1.935, 1.945).

 A1
 [3]
- 7 (i) Separate variables correctly and attempt to integrate at least one side B1 Obtain term $\ln R$ B1 Obtain $\ln x 0.57x$ B1 Evaluate a constant or use limits x = 0.5, R = 16.8, in a solution containing terms of the form

Evaluate a constant of use limits x = 0.5, K = 10.8, in a solution containing terms of the form

A1

Obtain correct solution in any form A1
Obtain a correct expression for R, e.g. $R = xe^{(3.80 - 0.57x)}$, $R = 44.7xe^{-0.57x}$ or

Obtain a correct expression for K, e.g. K = xe , K = 44.7xe of $R = 33.6xe^{(0.285 - 0.57x)}$

(ii) Equate $\frac{dR}{dx}$ to zero and solve for x M1

State or imply $x = 0.57^{-1}$, or equivalent, e.g. 1.75 A1 Obtain R = 28.8 (allow 28.9) A1 [3]

- 8 (i) Use $\sin(A+B)$ formula to express $\sin 3\theta$ in terms of trig. functions of 2θ and θ M1
- 8 (i) Use $\sin(A + B)$ formula to express $\sin 3\theta$ in terms of trig. functions of 2θ and θ M1
 Use correct double angle formulae and Pythagoras to express $\sin 3\theta$ in terms of $\sin \theta$ M1
 Obtain a correct expression in terms of $\sin \theta$ in any form
 Obtain the given identity
 A1
 [4]

[SR: Give M1 for using correct formulae to express RHS in terms of $\sin\theta$ and $\cos2\theta$, then M1A1 for expressing in terms of $\sin\theta$ and $\sin3\theta$ only, or in terms of $\cos\theta$, $\sin\theta$, $\cos2\theta$ and $\sin2\theta$, then A1 for obtaining the given identity.]

Page 6	Mark Scheme		Paper
	Cambridge International A Level – October/November 2014	9709	32

(ii) Substitute for x and obtain the given answer

B1 [1]

[4]

[5]

(iii) Carry out a correct method to find a value of x

M1

Obtain answers 0.322, 0.799, -1.12

A1 + A1 + A1

[Solutions with more than 3 answers can only earn a maximum of A1 + A1.]

(i) State or imply the form $\frac{A}{1-x} + \frac{B}{2-x} + \frac{C}{(2-x)^2}$ 9 **B**1

Use a correct method to determine a constant

M1 A1

Obtain one of A = 2, B = -1, C = 3

A1

Obtain a second value Obtain a third value

A1

[The alternative form $\frac{A}{1-x} + \frac{Dx+E}{(2-x)^2}$, where A=2, D=1, E=1 is marked

B1M1A1A1A1 as above.

(ii) Use correct method to find the first two terms of the expansion

of
$$(1-x)^{-1}$$
, $(2-x)^{-1}$, $(2-x)^{-2}$, $(1-\frac{1}{2}x)^{-1}$ or $(1-\frac{1}{2}x)^{-2}$

M1

Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction

 $A1 \checkmark + A1 \checkmark + A1 \checkmark$

Obtain final answer $\frac{9}{4} + \frac{5}{2}x + \frac{39}{16}x^2$, or equivalent

A1 [5]

[Symbolic binomial coefficients, e.g. $\binom{-1}{1}$ are not sufficient for M1. The \checkmark is on A,B,C.]

[For the A,D,E form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then, if $D \neq 0$, M1 for multiplying out fully and A1 for the final answer.]

[In the case of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]

Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point P on l with parameter λ , (**i**) *EITHER*: 10

e.g.
$$i - 17j + 4k + \lambda(-2i + j - 2k)$$

B1

Calculate scalar product of AP and a direction vector for l and equate to zero M1Solve and obtain $\lambda = 3$ **A**1

Carry out a complete method for finding the length of AP Obtain the given answer 15 correctly

M1**A**1

Calling (4, -9, 9) B, state BA (or AB) in component form, e.g. $-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}$ *OR*1:

B1

Calculate vector product of BA and a direction vector for l,

e.g. $(-i + 17j - 4k) \times (-2i + j - 2k)$

M1

Obtain correct answer, e.g. $-30\mathbf{i} + 6\mathbf{j} + 33\mathbf{k}$

A1

Divide the modulus of the product by that of the direction vector

M1

Obtain the given answer correctly

A1

OR2:State BA (or AB) in component form Use a scalar product to find the projection of BA (or AB) on l

B1 M1

Obtain correct answer in any form, e.g. $\frac{27}{\sqrt{6}}$

A1

Use Pythagoras to find the perpendicular

M1

Page 7		Mark Scheme	Syllabus	Pape	
	Camb	ridge International A Level – October/November 2014	9709	32	
		Obtain the given answer correctly		A1	
C	OR3:	State \overrightarrow{BA} (or \overrightarrow{AB}) in component form		B1	
		Use a scalar product to find the cosine of ABP		M1	
		Obtain correct answer in any form, e.g. $\frac{27}{\sqrt{9}.\sqrt{306}}$		A1	
		Use trig. to find the perpendicular		M1	
		Obtain the given answer correctly		A 1	
C)R4:	State \overrightarrow{BA} (or \overrightarrow{AB}) in component form		B1	
		Find a second point C on l and use the cosine rule in triangle ABC	to find the		
		cosine of angle A, B, or C, or use a vector product to find the area	of ABC	M1	
		Obtain correct answer in any form		A1	
		Use trig. or area formula to find the perpendicular		M1	
		Obtain the given answer correctly		A1	
C	DR5:	State correct AP (or PA) for a point P on l with parameter λ in an	y form	B1	
		Use correct method to express AP^2 (or AP) in terms of λ		M1	
		Obtain a correct expression in any form,			
		e.g. $(1-2\lambda)^2 + (-17+\lambda)^2 + (4-2\lambda)^2$		A 1	
		Carry out a method for finding its minimum (using calculus, algeb	ra		
		or Pythagoras)		M1	
		Obtain the given answer correctly		A1	[5]
(ii)) EITHER: Substitute coordinates of a general point of l in equation of plane and ei				
		equate constant terms or equate the coefficient of λ to zero, obta	ining an	3 614	
		equation in a and b Obtain a correct equation, e.g. $4a-9b-27+1=0$		M1* A1	
		Obtain a second correct equation, e.g. $-2a + b + 6 = 0$		A1	
		Solve for a or for b	M1(a	dep*)	
		Obtain $a = 2$ and $b = -2$	(A1	
C	OR:	Substitute coordinates of a point of l and obtain a correct equation	on,		
		e.g. $4a - 9b = 26$		B1	
		EITHER: Find a second point on l and obtain an equation in a a	and b	M1*	
		Obtain a correct equation		A1	
		OR: Calculate scalar product of a direction vector for <i>l</i> and	1 a vector	1	
		normal to the plane and equate to zero		M1* A1	
		Obtain a correct equation, e.g. $-2a + b + 6 = 0$ Solve for a or for b	M16	dep*)	
		Obtain $a = 2$ and $b = -2$	1411((Al	[5]
					[~]