D			Mark Sahama	<u>9709</u> w	<u>14 m</u>	<u>3 31</u>	
rage 4		Camb	Mark Scheme			Paper 31	
		Callin	nuge international A Level – October/November 2014	3103	31		
1	Use	law of the lo	garithm of a power		M1		
	Obta	ain a correct	linear equation in any form, e.g. $x = (x - 2) \ln 3$		A1		
	Obta	ain answer x	= 22.281		A1	[3]	
2	(i)	State or imp	bly ordinates 2, 1.1547, 1, 1.1547		B1		
		Use correct	formula, or equivalent, with $h = \frac{1}{c}\pi$ and four ordinates		M1		
		Obtain answ	ver 1.95		A1	[3]	
	(ii)	Make recog	nisable sketch of $y = \operatorname{cosec} x$ for the given interval		B1		
		Justify a sta	tement that the estimate will be an overestimate		B1	[2]	
3	Subs	stitute $x = -$	$\frac{1}{3}$, equate result to zero or divide by $3x + 1$ and equate the remaind	er to zero			
	and	obtain a corr	ect equation, e.g. $-\frac{1}{27}a + \frac{1}{2}b - \frac{1}{2} + 3 = 0$		B1		
	Suba	stituto $x - 2$	27 9 3 and equate result to 21 or divide by $x = 2$ and equate constant remain	nder to 21	M1		
	Obta	ain a correct	equation, e.g. $8a + 4b + 5 = 21$		A1		
	Solv	e for <i>a</i> or for	r b		M1		
	Obta	a = 12 and	d b = -20		A1	[5]	
4	(i)	Use chain ru	ile correctly at least once		M1		
		Obtain eithe	rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr		A1		
			$dt \cos^4 t dt$				
		Use $\frac{dy}{dt} = \frac{dy}{dt}$	$\frac{y}{dx} = \frac{dx}{dx}$		M1		
		dx dt	t dt				
		Obtain the g	given answer		A1	[4]	
	(ii)	State a corre	ect equation for the tangent in any form		B1		
		Use Pythage	oras ·		M1		
		Obtain the g	given answer		Al	[3]	
_			1+2i				
5	(i)	Substitute z	$= 1 + i$ and obtain $w = \frac{1}{1+i}$		B1		
		EITHER:	Multiply numerator and denominator by the conjugate of the deno	minator,			
			or equivalent		M1		
			Simplify numerator to $3 + i$ or denominator to 2		Al		
			Obtain final answer $\frac{3}{2} + \frac{1}{2}i$, or equivalent		A1		
		OR:	Obtain two equations in x and y , and solve for x or for y		M1		
			Obtain $x = \frac{3}{2}$ or $y = \frac{1}{2}$, or equivalent		A1		
			Obtain final answer $\frac{3}{2} + \frac{1}{2}i$, or equivalent		A1	[4]	

-		• 1	9/L	<u>19 W14</u>		<u> </u>
Page 5			Mark Scheme Syllab		o Pape	
		Camp	ridge International A Level – October/November 2014 970	9	31	
	(ii)	EITHER:	Substitute $w = z$ and obtain a 3-term quadratic equation in z.			
	(11)	DITTER.	$e = a i z^2 + z - i = 0$	1	R1	
			Solve a 3-term quadratic for z or substitute $z = x + iy$ and use a correct		DI	
			method to solve for x and y	Ν	И1	
		OR:	Substitute $w = x + iy$ and obtain two correct equations in x and y by equ	ating		
			real and imaginary parts]	B1	
			Solve for x and y	1	M1	
		Obtain a co	rrect solution in any form e.g. $z = \frac{-1 \pm \sqrt{3}}{1}$,	4 1	
		o o uni u con	2i	1		
		Obtain final	$\sqrt{3}$ 1		A 1	[4]
		Obtain linai	answer $-\frac{1}{2}$	1	A 1	[4]
6	(i)	Integrate an	d reach $bx \ln 2x - c \int x \cdot \frac{1}{2} dx$, or equivalent	М	1*	
		U	$\int_{-\infty}^{\infty} x^{-1}$			
		Obtain <i>x</i> ln2.	$x - \int x \frac{1}{x} dx$, or equivalent		A1	
		Obtain integ	gral $x \ln 2x - x$, or equivalent		A1	
		Obtain a cor	mits correctly and equate to 1, having integrated twice reset equation in any form $e = a a \ln 2a - a + 1 - \ln 2 = 1$	MI(dep)*) ∧ 1	
		Obtain the g	viven answer	1	41	[6]
		oounn the g		1		[v]
	(ii)	Use the itera	ative formula correctly at least once	Ν	И1	
		Obtain final	answer 1.94	1	A 1	
		Show suffic	ternet iterations to 4 d.p. to justify 1.94 to 2d.p. or show that there is a sign		A 1	[2]
		change in th	le Interval (1.955, 1.945).	1	41	[3]
7	(i)	Separate van	riables correctly and attempt to integrate at least one side		B1	
		Obtain term	$\ln R$		Bl	
		Evaluate a c	-0.5/x	e form	BI	
		$a \ln R$ and $b \ln r$	nx	C IOIIII	M1	
		Obtain corre	ect solution in any form		A1	
		Obtain a co	rect expression for R e.g. $R = re^{(3.80 - 0.57x)}$ $R = 44.7 re^{-0.57x}$ or			
			(0.285 - 0.57 r)			
		$R = 33.6xe^{4}$	(0.265 0.57x)		A1	[6]
		AD				
	(ii)	Equate $\frac{dR}{dr}$	to zero and solve for <i>x</i>		M1	
		dx				
		State or imp	bly $x = 0.57^{-1}$, or equivalent, e.g. 1.75		Al	[2]
		Obtain $R = 1$	28.8 (allow 28.9)		AI	[3]
8	(i)	Use $sin(A +$	B) formula to express $\sin 3\theta$ in terms of trig. functions of 2θ and θ	Ν	M 1	
		Use correct	double angle formulae and Pythagoras to express $\sin \theta$ in terms of $\sin \theta$	Ν	M 1	
		Obtain a con	rrect expression in terms of $\sin\theta$ in any form	1	A1	T AT
		Obtain the g	given identity	I	41	[4]
		then $M1\Delta 1$	for expressing in terms of $\sin \theta$ and $\sin 3\theta$ only or in terms			
		of $\cos\theta$ sin	h_{μ}^{A} cos2 μ and sin2 μ then A1 for obtaining the given identity 1			

				<u>9709_w</u>	14_ms	<u>3</u> 1
Pa	age 6	i Caml	Mark Scheme	Syllabus	Pape 21	€r
		Califi	Shage International A Level – October/November 2014	9709	31	
	(ii)	Substitute 1	for x and obtain the given answer		B1	[1]
	(iii)	Carry out a Obtain ans [Solutions	correct method to find a value of x wers 0.322, 0.799, -1.12 with more than 3 answers can only earn a maximum of A1 + A1.]	A1 + A1	M1 + A1	[4]
9	(i)	State or im	ply the form $\frac{A}{1-x} + \frac{B}{2-x} + \frac{C}{(2-x)^2}$		B1	
		Use a corre Obtain one Obtain a se Obtain a th	ect method to determine a constant of $A = 2$, $B = -1$, $C = 3$ acond value ird value		M1 A1 A1 A1	[5]
		[The altern	ative form $\frac{A}{1-x} + \frac{Dx+E}{(2-x)^2}$, where $A = 2, D = 1, E = 1$ is marked			
		B1M1A1A	1A1 as above.]			
	(ii)	Use correct of $(1-x)^{-1}$	t method to find the first two terms of the expansion , $(2-x)^{-1}$, $(2-x)^{-2}$, $(1-\frac{1}{2}x)^{-1}$ or $(1-\frac{1}{2}x)^{-2}$		M1	
		Obtain corr of each par	The rect unsimplified expansions up to the term in x^2 tial fraction A1-	$\wedge + A1 \checkmark +$	A1√	
		Obtain fina	l answer $\frac{9}{4} + \frac{5}{2}x + \frac{39}{16}x^2$, or equivalent		A1	[5]
		[Symbolic	binomial coefficients, e.g. $\binom{-1}{1}$ are not sufficient for M1. The \checkmark is o	n <i>A,B,C</i> .]		
		[For the A , $if D \neq 0$, M	<i>D,E</i> form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions 1 for multiplying out fully and A1 for the final answer.]	then,		
		[In the case the expansi	e of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 ions, M1 for multiplying out fully, and A1 for the final answer.]	for		
10	(i)	EITHER:	Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point <i>P</i> on <i>l</i> with parameter λ , e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$		B1	
			Calculate scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equal Solve and obtain $\lambda = 3$ Carry out a complete method for finding the length of <i>AP</i> Obtain the given answer 15 correctly	ate to zero	M1 A1 M1 A1	
		<i>OR</i> 1:	Calling $(4, -9, 9)$ B, state \overrightarrow{BA} (or \overrightarrow{AB}) in component form, e.g. – i –	⊦17 j −4 k	B1	
			Calculate vector product of \overrightarrow{BA} and a direction vector for <i>l</i> , e.g. $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$		M1	
			Obtain correct answer, e.g. $-30\mathbf{i} + 6\mathbf{j} + 33\mathbf{k}$		A1	
			Divide the modulus of the product by that of the direction vector		M1	
			Obtain the given answer correctly		A1	
		OR2:	State BA (or AB) in component form		B1	
			Use a scalar product to find the projection of <i>BA</i> (or <i>AB</i>) on <i>l</i> Obtain correct answer in any form, e.g. $\frac{27}{2}$		MI A1	
			Use Pythagoras to find the perpendicular		M1	

© Cambridge International Examinations 2014

			9709 w	14 m:	з 31
Page 7		Mark Scheme	Syllabus	Pape	ər
	Camb	ridge International A Level – October/November 2014	9709	31	
		Obtain the given answer correctly		Δ 1	
				AI	
C	DR3:	State BA (or AB) in component form		B1	
		Use a scalar product to find the cosine of <i>ABP</i>		MI	
		Obtain correct answer in any form, e.g. $\frac{27}{\sqrt{9}.\sqrt{306}}$		A1	
		Use trig. to find the perpendicular		M1	
		Obtain the given answer correctly		A1	
C	DR4:	State \overrightarrow{BA} (or \overrightarrow{AB}) in component form		B1	
		Find a second point C on \hat{l} and use the cosine rule in triangle ABC to	to find the		
		cosine of angle A, B, or C, or use a vector product to find the area of	of ABC	M1	
		Obtain correct answer in any form		A1	
		Use trig. or area formula to find the perpendicular		M1	
		Obtain the given answer correctly		A1	
C	DR5:	State correct AP (or PA) for a point P on l with parameter λ in any	y form	B1	
		Use correct method to express AP^2 (or AP) in terms of λ Obtain a correct expression in any form,		M1	
		e.g. $(1-2\lambda)^2 + (-17+\lambda)^2 + (4-2\lambda)^2$		A1	
		Carry out a method for finding its minimum (using calculus, algebr	ra		
		or Pythagoras)		M1	
		Obtain the given answer correctly		A1	[5]
(ii)	(ii) <i>EITHER</i> : Substitute coordinates of a general point of l in equation of plane and e				
		equate constant terms or equate the coefficient of λ to zero, obtain	ning an	2.61.4	
		equation in a and b Obtain a correct equation $a = 4\pi - 0k - 27 + 1 = 0$		MI*	
		Obtain a correct equation, e.g. $4a - 9b - 27 + 1 = 0$			
		Solve for <i>a</i> or for <i>b</i>	M1(c	den*)	
		Obtain $a = 2$ and $b = -2$	mite	A1	
C	DR:	Substitute coordinates of a point of l and obtain a correct equation	n.	111	
-		e.g. $4a - 9b = 26$,	B1	
		<i>EITHER</i> : Find a second point on <i>l</i> and obtain an equation in <i>a</i> and	nd b	M1*	
		Obtain a correct equation		A1	
		<i>OR</i> : Calculate scalar product of a direction vector for <i>l</i> and	a vector		
		normal to the plane and equate to zero		M1*	
		Obtain a correct equation, e.g. $-2a + b + 6 = 0$		Al	
		Solve for a or for b Obtain $x = 2$ and $k = -2$	MI(C	1ep*)	[#1
		Obtain $a = 2$ and $b = -2$		AI	[5]