Page 4		Mark Scheme Cambridge International AS Level – October/November 2014	9709_w1	<u>4 ms</u>	<u>ms 2</u> 3	
			Syllabus 9709	23	r	
1	State Use Obta	e or imply correct <i>y</i> -values 6, 4, 0, 8, 24 correct formula, or equivalent, with $h = 1$ and five <i>y</i> -values in 27		B1 M1 A1	[3]	
2	State Equa Obta Subs Obta	e or imply $\ln y = \ln a + x \ln b$ ate $\ln b$ to numerical gradient of line $\sin b = 1.85$ atitute to find value of a $\sin a = 3.45$		B1 M1 A1 M1 A1	[5]	
3	(a)	Express integrand in the form $p\cos\theta + 2$ State correct $2\cos\theta + 2$ Integrate to obtain $2\sin\theta + 2\theta$ (+ c)		M1 A1 A1	[3]	
	(b)	Integrate to obtain form $k \ln(2x+3)$ Obtain correct $\frac{1}{2} \ln(2x+3)$ Apply limits correctly	D	M1 A1 M1		
		Obtain $\frac{1}{2}\ln 15$		A1	[4]	
4	(i)	Differentiate to obtain form $k_1 \sin 2x + k_2 \cos x$ Obtain correct $-6 \sin 2x - 5 \cos x$ Substitute $\frac{1}{6}\pi$ to obtain $-\frac{11}{2}\sqrt{3}$ or exact equivalent		M1 A1 A1	[3]	
	(ii)	Obtain $6y + 6x \frac{dy}{dx}$ as derivative of $6xy$ Obtain $3y^2 \frac{dy}{dx}$ as derivative of y^3 Obtain $3x^2 + 6y + 6x \frac{dy}{dx} + 3y^2 \frac{dy}{dx} = 0$ or equivalent Substitute 1 and 2 to find value of gradient dependent on at least one B1	:	B1 B1 B1 M1		
5	(i)	Obtain gradient $-\frac{1}{18}$ or $-\frac{1}{6}$ State $-40 + 4a + b = 0$ or equivalent		A1 B1	[5]	
	(ii)	State $-135 + 9a + b = 0$ or equivalent Solve a pair of linear simultaneous equations Obtain $a = 19$ and $b = -36$ Identify $5x - 6$ as a factor State $(x + 2)(x + 3)(5x - 6)$:	B1 M1 A1 B1 B1	[4]	
		State or imply $5^{y} = \frac{6}{5}$, following a positive value from factorisation Apply logarithms and use power law Obtain 0.113 only	E	B1√ M1 A1	[5]	

_			<u>97</u> 09 v	w14 m	<u>s</u> 2
F	Page 5	Mark Scheme	Syllabus	Pap	er
		Cambridge International AS Level – October/November 2014	9709	23	
6	(i)	Use quotient rule or equivalent Obtain $2x(1+e^{3x})-3x^2e^{3x}$ or equivalent		M1	
		$\left(1+e^{3x}\right)^2$ of equivalent		Π	
		Equate first derivative to zero and attempt rearrangement to $x = \dots$		DM1	
		Obtain $x = \frac{2}{3} (1 + e^{-3x})$ with sufficient detail and no errors seen (AG)		A1	[4]
	(ii)	Consider sign of $x - \frac{2}{3}(1 + e^{-3x})$ at 0.7 and 0.8 or equivalent		M1	
		Obtain correct values (-0.05 and 0.07 or equivalents) and conclude appropriate	ly	A1	[2]
	(iii)	Use the iterative formula correctly at least once		M1	
		Obtain final answer 0.739		A1	
		show sufficient iterations to 5 decimal places to justify result or show a sign ch the interval (0.7385, 0.7395)	ange in	A1	[3]
7	(i)	Use $\sec^2 \alpha = 1 + \tan^2 \alpha$		B1	
		$Confirm \ 3\tan^2\alpha + 4\tan\alpha - 4 = 0$		B1	
		Solve quadratic equation for $\tan \alpha$		M1	
		Obtain, finally, $\tan \alpha = \frac{2}{3}$ only		A1	[4]
	(ii)	State or imply $\tan(\alpha + \beta) = \frac{1}{6}$		B1	
		State $\frac{\frac{2}{3} + \tan \beta}{1 - \frac{2}{3} \tan \beta} = \frac{1}{6}$, following their value of $\tan \alpha$		B1√	
		Solve equation of form $\frac{a+bt}{c+dt}$ for t		M1	
		Obtain $\tan \beta = -\frac{9}{20}$		A1	
		Conclude with $\cot \beta = -\frac{20}{9}$ or exact equivalent		A1	[5]