Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2014	9709	23

1 State or imply correct y-values $6,4,0,8,24 \quad$ B1
Use correct formula, or equivalent, with $h=1$ and five y-values
Obtain 27

2 State or imply $\ln y=\ln a+x \ln b$
Equate $\ln b$ to numerical gradient of line
Obtain $b=1.85$
Substitute to find value of a M1
Obtain $a=3.45$

3 (a) Express integrand in the form $p \cos \theta+2$
State correct $2 \cos \theta+2$ A1
Integrate to obtain $2 \sin \theta+2 \theta(+c)$ A1
(b) Integrate to obtain form $k \ln (2 x+3)$ M1
Obtain correct $\frac{1}{2} \ln (2 x+3)$
Apply limits correctly DM1
Obtain $\frac{1}{2} \ln 15$

4 (i) Differentiate to obtain form $k_{1} \sin 2 x+k_{2} \cos x$
Obtain correct $-6 \sin 2 x-5 \cos x$
Substitute $\frac{1}{6} \pi$ to obtain $-\frac{11}{2} \sqrt{3}$ or exact equivalent
(ii) Obtain $6 y+6 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $6 x y$

Obtain $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of y^{3}
Obtain $3 x^{2}+6 y+6 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ or equivalent
Substitute 1 and 2 to find value of gradient dependent on at least one B1 M1
Obtain gradient $-\frac{15}{18}$ or $-\frac{5}{6}$
(i) State $-40+4 a+b=0$ or equivalent B1

State $-135+9 a+b=0$ or equivalent
Solve a pair of linear simultaneous equations M1
Obtain $a=19$ and $b=-36$
(ii) Identify $5 x-6$ as a factor

B1
State $(x+2)(x+3)(5 x-6) \quad$ B1
State or imply $5^{y}=\frac{6}{5}$, following a positive value from factorisation B1 $\sqrt{ }$
Apply logarithms and use power law M1
Obtain 0.113 only A1

Page 5	Mark Scheme	Syllabus	Papēr
	Cambridge International AS Level - October/November 2014	9709	23

6 (i) Use quotient rule or equivalent
Obtain $\frac{2 x\left(1+e^{3 x}\right)-3 x^{2} e^{3 x}}{\left(1+e^{3 x}\right)^{2}}$ or equivalent
Equate first derivative to zero and attempt rearrangement to $x=\ldots$
Obtain $x=\frac{2}{3}\left(1+e^{-3 x}\right)$ with sufficient detail and no errors seen (AG)
(ii) Consider sign of $x-\frac{2}{3}\left(1+e^{-3 x}\right)$ at 0.7 and 0.8 or equivalent

Obtain correct values (-0.05 and 0.07 or equivalents) and conclude appropriately
(iii) Use the iterative formula correctly at least once

Obtain final answer 0.739
Show sufficient iterations to 5 decimal places to justify result or show a sign change in the interval $(0.7385,0.7395)$

7 (i) Use $\sec ^{2} \alpha=1+\tan ^{2} \alpha$
Confirm $3 \tan ^{2} \alpha+4 \tan \alpha-4=0$
Solve quadratic equation for $\tan \alpha$ M1
Obtain, finally, $\tan \alpha=\frac{2}{3}$ only
(ii) State or imply $\tan (\alpha+\beta)=\frac{1}{6}$

State $\frac{\frac{2}{3}+\tan \beta}{1-\frac{2}{3} \tan \beta}=\frac{1}{6}$, following their value of $\tan \alpha$
Solve equation of form $\frac{a+b t}{c+d t}$ for t M1

Obtain $\tan \beta=-\frac{9}{20}$
Conclude with $\cot \beta=-\frac{20}{9}$ or exact equivalent A1

