			9709_w1	4_m	<u> 2</u> 1
P	age 4	Mark Scheme	Syllabus	Pape	er
		Cambridge International AS Level – October/November 2014	9709	21	
1		e or imply correct y-values 6, 4, 0, 8, 24		B1	
		correct formula, or equivalent, with $h = 1$ and five y-values		M1	F 0 7
	Obt	ain 27		A1	[3]
2	Stat	e or imply $\ln y = \ln a + x \ln b$		B1	
		ate lnb to numerical gradient of line		M1	
	Obt	ain b = 1.85		A 1	
		stitute to find value of a		M1	
	Obt	ain a = 3.45		A1	[5]
3	(a)	Express integrand in the form $p\cos\theta + 2$		M1	
	` '	State correct $2\cos\theta + 2$		A1	
		Integrate to obtain $2 \sin \theta + 2\theta$ (+ c)		A1	[3]
	(b)	Integrate to obtain form $k \ln(2x+3)$		M1	
		Obtain correct $\frac{1}{2}\ln(2x+3)$		A1	
		Apply limits correctly	D	M1	
		Obtain $\frac{1}{2} \ln 15$		A1	[4]
4	(i)	Differentiate to obtain form $k_1 \sin 2x + k_2 \cos x$		M1	
		Obtain correct $-6\sin 2x - 5\cos x$		A1	
		Substitute $\frac{1}{6}\pi$ to obtain $-\frac{11}{2}\sqrt{3}$ or exact equivalent		A1	[3]
	(ii)	Obtain $6y + 6x \frac{dy}{dx}$ as derivative of $6xy$		B1	
		Obtain $3y^2 \frac{dy}{dx}$ as derivative of y^3		B1	
		Obtain $3x^2 + 6y + 6x \frac{dy}{dx} + 3y^2 \frac{dy}{dx} = 0$ or equivalent		B1	
		Substitute 1 and 2 to find value of gradient dependent on at least one B1		M1	
		Obtain gradient $-\frac{15}{18}$ or $-\frac{5}{6}$		A1	[5]
_	(*)			D1	
5	(i)	State $-40 + 4a + b = 0$ or equivalent		B1 B1	
		State $-135 + 9a + b = 0$ or equivalent Solve a pair of linear simultaneous equations		ы М1	
		Obtain $a = 19$ and $b = -36$		A1	[4]
	(ii)	Identify $5x - 6$ as a factor		B1	
	(11)	State $(x+2)(x+3)(5x-6)$		B1	
				וע	
		State or imply $5^y = \frac{6}{5}$, following a positive value from factorisation	I	31√	
		Apply logarithms and use power law		M1	
		Obtain 0.113 only		A1	[5]

	2702 WII MIO 2			
Page 5	Mark Scheme	Syllabus	Paper	
	Cambridge International AS Level – October/November 2014	9709	21	

6 (i) Use quotient rule or equivalent

M1

A1

Obtain
$$\frac{2x(1+e^{3x})-3x^2e^{3x}}{(1+e^{3x})^2}$$
 or equivalent

DM1

Equate first derivative to zero and attempt rearrangement to x = ...Obtain $x = \frac{2}{3}(1 + e^{-3x})$ with sufficient detail and no errors seen (AG)

A1

[4]

(ii) Consider sign of $x - \frac{2}{3}(1 + e^{-3x})$ at 0.7 and 0.8 or equivalent

M1

Obtain correct values (-0.05 and 0.07 or equivalents) and conclude appropriately

A1 [2]

(iii) Use the iterative formula correctly at least once Obtain final answer 0.739

M1 A1

Show sufficient iterations to 5 decimal places to justify result or show a sign change in the interval (0.7385, 0.7395)

A1 [3]

7 (i) Use $\sec^2 \alpha = 1 + \tan^2 \alpha$

B1

Confirm $3 \tan^2 \alpha + 4 \tan \alpha - 4 = 0$

B1 M1

Solve quadratic equation for $\tan \alpha$ Obtain, finally, $\tan \alpha = \frac{2}{3}$ only

A1 [4]

(ii) State or imply $\tan(\alpha + \beta) = \frac{1}{6}$

B1

State $\frac{\frac{2}{3} + \tan \beta}{1 - \frac{2}{3} \tan \beta} = \frac{1}{6}$, following their value of $\tan \alpha$

B1√

Solve equation of form $\frac{a+bt}{c+dt}$ for t

M1

Obtain $\tan \beta = -\frac{9}{20}$

A1

[5]

Conclude with $\cot \beta = -\frac{20}{9}$ or exact equivalent