					9709_w14_ms_12		
Page 4		Mark Scheme			Syllabus	Paper	
		Cambridge International AS/A Level	– October	er/November 2014 9709		12	
1	Vol =	Vol = $(\pi) \int x^2 dy = (\pi) \int (y-1) dy$		Use of $\int x^2 - \text{not} \int y^2 - \text{ignore } \pi$			
	$(v-1)^2$		A1	со			
	Integral is $\frac{1}{y^2} - y$ or $\frac{(y-1)}{2}$		B1	Sight of an integral sign with 1 and 5			
	2 2						
	Limits for y are 1 to 5						
	$\rightarrow 8\pi \text{ or } 25.1(\text{AWRT})$		A1	со			
			[4]	(no π max 3/4)			
2	(i) ta	(i) $\tan\theta = \frac{5}{12}$ M1 Any valid trig m		Any valid trig math	ad ag		
	()			Any valid trig method ag			
	-	$\rightarrow (\theta = 0.3948)$	[1]				
			54				
	(II) ((ii) Other angle in triangle = $-\frac{1}{2}\pi - 0.3948$		Unsimplified OK			
	A	Area of triangle $AOB = \frac{1}{2} \times 12 \times 5 \ (= 30)$	B1	со			
	U	Use of $\frac{1}{2}r^2\theta$ once	M1	With θ in radians and $r = 5$ or 12		2	
	S	haded area = sector + sector - triangle		With 0 in facilities and 7 - 5 of 12			
	=	$=\frac{1}{2} \times 12^{2} \times 0.3948 + \frac{1}{5} \times 2^{2} \theta - 30$	DM1	Sum of 2 sectors – triangle or any other			
		2 2	valid method using the given angle and			gle and a	
				different one.			
	=	= 28.43 + 14.70 - 30 = 13.1	A1	со			
			[5]				
3	(i) ($(1+x)^5 = 1 + 5x + 10x^2$	B2,1	Loses 1 for each er	ror		
			[2]				
	(ii) ($\left(1+px+x^2\right)^5$					
	(1+) $5(px + x^2) + 10(px + x^2)^2$	M1	Replace x by $(px + x^2)$ in their expansion		kpansion	
	C	Coeff of $x^2 = 5 + 10p^2$	DM1	1 Considers 2 terms			
	=	$p = 3 \rightarrow p = 3$		co - no penalty for	± 3		
			[3]				
		12					
4	$y = \frac{1}{3}$	$\overline{-2x}$					
	(i) E	Differential = $-12(3-2x)^{-2} \times -2$	B1 B1	co co (even if 1st E	8 mark lost)		
			[2]				
		1. J. J.					
	(ii) -	$\frac{dy}{dt} = \frac{dy}{dt} \div \frac{dx}{dt} = 0.4 \div 0.15$	M1	Chain rule used con	rrectlv (AEF)	1	
	(dx dt dt					
	$\rightarrow \frac{24}{2} = \frac{8}{2}$		M1	Equates their $\frac{dy}{dx}$ with their $\frac{8}{2}$ or $\frac{3}{2}$			
	$(3-2x)^2$ 3		1711	dx 3 8		8	
	_	$\rightarrow x = 0 \text{ or } 3$	ALAL	сосо			
			[4]				

	Daga 5 Mark Sahama				9709_w14_ms_12		
	Page 5 Mark Scheme Cambridge International AS/A Level – October/November 201			/November 2014	9709	12	
					0100	16	
5	1 + s	$inxtanx = 5\cos x$					
	(i)	Replaces t by s/c $1 + \frac{s^2}{s} = 5c$	M1	Correct formula			
		$\frac{1+\frac{1}{c}-3c}{c}$ Replace s ² by 1 - c ²	M1	Correct formula us	ed in appropr	riate place	
		$\rightarrow 6c^2 - c - 1 (= 0)$	A1 [3]	AG		_	
	(ii)	Soln of quadratic \rightarrow (c = $-\frac{1}{3}$ or $\frac{1}{2}$) $\rightarrow x = 60^{\circ}$ or 109.5°	M1 A1 A1 [3]	Correct method co co			
6	y = x	$a^3 + ax^2 + bx$					
	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2ax + b$	B1	со			
	(ii)	$b^2 - 4ac = 4a^2 - 12b \ (<0)$	M1	Use of discriminan	t on their qua	dratic $\frac{dy}{dx}$	
		$\rightarrow a^2 < 3b$	A1 [3]	or other valid meth co – answer given	od		
	(iii)	$y = x^3 - 6x^2 + 9x$					
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 12x + 9 < 0$	M1	Attempt at differen	tiation		
		= 0 when x = 1 and 3 $\rightarrow 1 < x < 3$	A1 A1 [3]	co condone ≤			
7	(i)	$\mathbf{AM} = -6\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}$ $\mathbf{AC} = -8\mathbf{i} + 8\mathbf{j}$	B2,1 B1 [3]	co -1 each error co			
	(ii)	AM.AC = 48 + 16 = 64	M1	Use of x_1y_1 + etc. w	with suitable w	vectors	
		$64 = \sqrt{128}\sqrt{65\cos\theta}$ $\rightarrow \theta = 45.4^{\circ}$	M1 M1 A1 [4]	Product of moduli. co	Correct link.		

 9709 w14 ms 12

 Page 6
 Mark Scheme
 Syllabus
 Paper

 Cambridge International AS/A Level – October/November 2014
 9709
 12

8	(a) (b)	$S_n = 32n - n^2.$ Set <i>n</i> to 1, <i>a</i> or $S_1 = 31$ Set <i>n</i> to 2 or other value $S_2 = 60$ \rightarrow 2nd term = 29 $\rightarrow d = -2$ (or equates formulae – compares coeffs n^2 , <i>n</i>) [M1 comparing, A1 <i>d</i> A1 <i>a</i>] $\frac{a}{1-r} = 20, \frac{a(1-r)^2}{1-r}, \text{ or } a + ar = 12.8$	B1 M1 A1 [3] B1 B1	co Correct method. co [M1 only when coeffs compared] co co	
		Elimination of $\frac{a}{1-r}$ or <i>a</i> or <i>r</i>	M1	'Correct' elimination to form equation in <i>a</i> or <i>r</i>	
		\rightarrow (r = 0.6) \rightarrow a = 8	DM1 A1 [5]	Complete method leading to $a =$ Condone $a = 8$ and 32	
9	(i)	$m_{AB} = -3 \text{ or } \frac{-9}{3}$	B1	oe	
		$m_{AD} = \frac{1}{3}$	M1	use of $m_1m_2 = -1$ with grad AB	
		Eqn AD $y-6 = \frac{1}{3}(x-2)$ or $3y = x+16$	A1 [3]	co – OK unsimplified	
	(ii)	Eqn <i>CD</i> $y-3 = -3(x-8)$ or $y = -3x + 27$ Sim Eqns	B1√ ^k M1	OK unsimplified. \checkmark on <i>m</i> of <i>AB</i> . Reasonable algebra leading to $x =$ or $y =$ with <i>AD</i> and <i>CD</i> .	
	(•••)	$\rightarrow D(6\frac{1}{2}, 7\frac{1}{2})$	A1 [3]		
	(111)	$\rightarrow E$ (5, 12) or mid-point (5,4.5) Length of $BE = 15$	B1 B1 [2]	May be implied co	
10	$\frac{d^2y}{dr^2}$	$\frac{v}{2} = \frac{24}{r^3} - 4$			
	(i)	$(\text{If } x = 2) \text{ it's negative } \rightarrow \text{ Max}$	B1 [1]	WWW	
	(ii)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -12x^{-2} - 4x + (A)$	B2,1,0	oe one per term	
		= 0 when x = 2 $\rightarrow A = 11$	M1 A1 [4]	Attempt at the constant <i>A</i> after ∫n co	
	(iii)	$(y =) 12x^{-1} - 2x^2 + Ax + (c)$	B2,1,0 √	oe Doesn't need $+c$, but does need a term A to give "Ax".	
		$y = 13$ when $x = 1 \rightarrow c = -8$	M1	Attempt at c after $\int n$	
		$(\text{If } x = 2) \ y = 12$	A1 [4]	со	

				9709 w	14 ms 12
Page 7	e 7 Mark Scheme			Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014			9709	12
11 f: <i>x</i> ⊢	$\rightarrow 6 - 4\cos\left(\frac{1}{2}x\right)$				
(i) 6	$5 - 4\cos\left(\frac{1}{2}x\right) = 4 \rightarrow 4\cos\left(\frac{1}{2}x\right) = 2$	M1	Makes $\cos\left(\frac{1}{2}x\right)$ the subject.		
-	$\frac{1}{2}x = \frac{1}{3}\pi$ $x = \frac{2}{3}\pi$	M1	Looks up " $\frac{1}{2}x$ " before $\times 2$		
		A1 [3]	co (120° gets A0 –	- decimals A())
(ii) F	Range is $2 \le f(x) \le 10$	B1 B1 [2]	condone <		
(iii)		B1 B1 [2]	Point of inflexion a Fully correct	t π	
(iv) ($\cos\left(\frac{1}{2}x\right) = \frac{1}{4}(6-y)$	M1	Makes $\cos\left(\frac{1}{2}x\right)$ the	ne subject	
	$\frac{1}{2}x = \cos^{-1}\left(\frac{1}{4}(6-y)\right)$	M1	Order of operations (M marks allowed	s correct if + for –)	
f	$f^{-1}(x) = 2\cos^{-1}\left(\frac{6-x}{4}\right)$	A1 [3]	oe – needs to be a f	function of x	not y