| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International AS/A Level - October/November 2014 | 9709 | 12 |


| $1 \quad \mathrm{Vol}=(\pi) \int x^{2} \mathrm{~d} y=(\pi) \int(y-1) \mathrm{d} y$ Integral is $\frac{1}{2} y^{2}-y$ or $\frac{(y-1)^{2}}{2}$ Limits for $y$ are 1 to 5 <br> $\rightarrow 8 \pi$ or 25.1 (AWRT) | M1 <br> A1 <br> B1 <br> A1 <br> [4] | Use of $\int x^{2}-\operatorname{not} \int y^{2}-$ ignore $\pi$ co <br> Sight of an integral sign with 1 and 5 $\begin{array}{\|l} \text { co } \\ \text { (no } \pi \max 3 / 4 \text { ) } \end{array}$ |
| :---: | :---: | :---: |
| 2 (i) $\begin{aligned} & \tan \theta=\frac{5}{12} \\ & \rightarrow(\theta=0.3948) \end{aligned}$ <br> (ii) Other angle in triangle $=-\frac{1}{2} \pi-0.3948$ <br> Area of triangle $A O B=\frac{1}{2} \times 12 \times 5(=30)$ <br> Use of $\frac{1}{2} r^{2} \theta$ once <br> Shaded area $=$ sector + sector - triangle $=\frac{1}{2} \times 12^{2} \times 0.3948+\frac{1}{2} 5^{2} \theta-30$ $=28.43+14.70-30=13.1$ | $\begin{aligned} & \text { M1 } \\ & \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { DM1 } \\ & \text { A1 } \end{aligned}$ | Any valid trig method ag <br> Unsimplified OK <br> co <br> With $\theta$ in radians and $r=5$ or 12 <br> Sum of 2 sectors - triangle or any other valid method using the given angle and a different one. <br> co |
| 3 <br> (i) $(1+x)^{5}=1+5 x+10 x^{2}$ <br> (ii) $\begin{aligned} & \left(1+p x+x^{2}\right)^{5} \\ & (1+) 5\left(p x+x^{2}\right)+10\left(p x+x^{2}\right)^{2} \\ & \text { Coeff of } x^{2}=5+10 p^{2} \\ & =95 \rightarrow p=3 \end{aligned}$ | $\begin{array}{\|ll} \hline \text { B2,1 } \\ & \\ \text { M1 } \\ \text { DM1 } \\ \text { DM1 } \\ \text { A1 } & \\ & \\ \hline \end{array}$ | Loses 1 for each error <br> Replace $x$ by $\left(p x+x^{2}\right)$ in their expansion <br> Considers 2 terms <br> co - no penalty for $\pm 3$ |
| $4 y=\frac{12}{3-2 x}$ <br> (i) Differential $=-12(3-2 x)^{-2} \times-2$ <br> (ii) $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}=0.4 \div 0.15 \\ & \rightarrow \frac{24}{(3-2 x)^{2}}=\frac{8}{3} \\ & \rightarrow x=0 \text { or } 3 \end{aligned}$ | B1 B1 <br> [2] <br> M1 <br> M1 <br> A1 A1 <br> [4] | co co (even if 1st B mark lost) <br> Chain rule used correctly (AEF) <br> Equates their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ with their $\frac{8}{3}$ or $\frac{3}{8}$ <br> co co |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International AS/A Level - October/November 2014 | 9709 | 12 |


| $5 \quad 1+\sin x \tan x=5 \cos x$ <br> (i) Replaces $t$ by s/c $1+\frac{\mathrm{s}^{2}}{\mathrm{c}}=5 \mathrm{c}$ <br> Replace $\mathrm{s}^{2}$ by $1-\mathrm{c}^{2}$ $\rightarrow 6 \mathrm{c}^{2}-\mathrm{c}-1(=0)$ <br> (ii) Soln of quadratic $\rightarrow$ (c $=-1 / 3$ or $1 / 2)$ $\rightarrow x=60^{\circ}$ or $109.5^{\circ}$ | $\begin{aligned} & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \hline \end{aligned}$ | Correct formula <br> Correct formula used in appropriate place <br> AG <br> Correct method <br> co co |
| :---: | :---: | :---: |
| $6 \quad y=x^{3}+a x^{2}+b x$ <br> (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+2 a x+b$ <br> (ii) $b^{2}-4 a c=4 a^{2}-12 b(<0)$ $\rightarrow a^{2}<3 b$ <br> (iii) $\begin{aligned} & y=x^{3}-6 x^{2}+9 x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-12 x+9<0 \\ & =0 \text { when } x=1 \text { and } 3 \\ & \rightarrow 1<x<3 \end{aligned}$ |  | co <br> Use of discriminant on their quadratic $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or other valid method co - answer given <br> Attempt at differentiation <br> co <br> condone $\leqslant$ |
| $7 \quad$ (i) $\begin{aligned} & \mathbf{A M}=-6 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k} \\ & \mathbf{A C}=-8 \mathbf{i}+8 \mathbf{j} \end{aligned}$ <br> (ii) AM.AC $=48+16=64$ $\begin{aligned} & 64=\sqrt{ } 128 \sqrt{ } 65 \cos \theta \\ & \rightarrow \theta=45.4^{\circ} \end{aligned}$ | B2,1 <br> [3] <br> M1 <br> M1 M1 <br> A1 <br> [4] | co -1 each error <br> co <br> Use of $x_{1} y_{1}+$ etc. with suitable vectors <br> Product of moduli. Correct link. co |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International AS/A Level - October/November 2014 | 9709 | 12 |

8 (a) $S_{n}=32 n-n^{2}$.
Set $n$ to $1, a$ or $S_{1}=31$
Set $n$ to 2 or other value $S_{2}=60$
$\rightarrow 2$ nd term $=29 \rightarrow d=-2$
(or equates formulae - compares coeffs $n^{2}, n$ )
[M1 comparing, A1 $d \mathrm{~A} 1 a]$
(b) $\frac{a}{1-r}=20, \frac{a(1-r)^{2}}{1-r}$, or $a+a r=12.8$

Elimination of $\frac{a}{1-r}$ or $a$ or $r$
$\rightarrow(r=0.6) \rightarrow a=8$

9 (i) $m_{A B}=-3$ or $\frac{-9}{3}$
$m_{A D}=\frac{1}{3}$
Eqn $A D y-6=\frac{1}{3}(x-2)$ or $3 y=x+16$
(ii) Eqn $C D \quad y-3=-3(x-8)$ or $y=-3 x+27$

Sim Eqns
$\rightarrow D(61 / 2,71 / 2)$
(iii) Use of vectors or mid-point
$\rightarrow E(5,12)$ or mid-point $(5,4.5)$
Length of $B E=15$
$10 \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{24}{x^{3}}-4$
(i) (If $x=2$ ) it's negative $\rightarrow$ Max
(ii) $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)-12 x^{-2}-4 x+(A)$
$=0$ when $x=2$
$\rightarrow A=11$
(iii) $(y=) 12 x^{-1}-2 x^{2}+A x+(c)$
$y=13$ when $x=1 \rightarrow c=-8$
(If $x=2$ ) $y=12$

| B1 | lo |
| ---: | ---: | :--- |
| M1 A1 | Correct method. <br> co |
| $[3]$ | $[$ M1 only when coeffs compared $]$ |

                                    Condone \(a=8\) and 32
    OK unsimplified. $\hat{N}^{\text {on } m}$ of $A B$.
Reasonable algebra leading to $x=$ or $y=$ with $A D$ and $C D$

May be implied
co

B1

B2,1,0
M1
A1
[4]
B2,1,0 ^
M1
A1
www
oe one per term
Attempt at the constant $A$ after $\ln$ co
oe Doesn't need $+c$, but does need a term $A$ to give " $A x$ ".
Attempt at $c$ after $\int \mathrm{n}$
co
[4]
$11 \mathrm{f}: x \mapsto 6-4 \cos \left(\frac{1}{2} x\right)$
(i) $6-4 \cos \left(\frac{1}{2} x\right)=4 \rightarrow 4 \cos \left(\frac{1}{2} x\right)=2$

$$
\frac{1}{2} x=\frac{1}{3} \pi \quad x=\frac{2}{3} \pi
$$

(ii) Range is $2 \leqslant \mathrm{f}(x) \leqslant 10$
(iii)
(iv) $\quad \cos \left(\frac{1}{2} x\right)=\frac{1}{4}(6-y)$
$\frac{1}{2} x=\cos ^{-1}\left(\frac{1}{4}(6-y)\right)$
$\mathrm{f}^{-1}(x)=2 \cos ^{-1}\left(\frac{6-x}{4}\right)$
[2]
1
[2]

A1

Makes $\cos \left(\frac{1}{2} x\right)$ the subject.
Looks up " $\frac{1}{2} x$ " before $\times 2$
co $\left(120^{\circ}\right.$ gets $\left.\mathrm{A} 0-\operatorname{decimals} \mathrm{A} 0\right)$
condone <

Point of inflexion at $\pi$
Fully correct

Makes $\cos \left(\frac{1}{2} x\right)$ the subject
Order of operations correct (M marks allowed if + for - )
oe - needs to be a function of $x$ not $y$

