| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 71 |


| $1 \quad \begin{array}{ll} 1 & \lambda=\frac{1}{30} \\ & 1-\mathrm{e}^{-\frac{1}{30}} \\ & =0.0328 \text { (3 s.f. }) \end{array}$ | B1 <br> M1 <br> M1 <br> A1 <br> [4] | o.e <br> $1-\mathrm{P}(X=0)$ by Poisson, any $\lambda$ allow 1 end error $1-\mathrm{P}(X=0)$ by Poisson, correct $\lambda$ no end errors <br> S.R. Binomial with final answer 0.0328 B2 Correct answer, no working scores B2 |
| :---: | :---: | :---: |
| $2 \begin{aligned} & z=2.576 \\ & 2 \times z \times \frac{0.17}{\sqrt{n}}=0.2 \text { oe } \\ & n=\left(\frac{2 \times 0.17 \times 2.576}{0.2}\right)^{2} \text { oe }(=19.2) \\ & \\ & \text { Smallest } n \text { is } 20 \end{aligned}$ | $\begin{array}{lr} \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } \end{array}$ | Seen (accept 2.574 to 2.579 ) <br> Allow without ' $2 \times$ ' OR with incorrect $z$ <br> Attempt to arrange equ of correct form (with correct z and ' $2 \times$ ' into the form $\mathrm{n}=$ or $\sqrt{\mathrm{n}}=$ |
| $3 \text { (i) } \quad \begin{aligned} & \text { est }(\mu)=2866 \text { or } 2870(3 \text { s.f. }) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & =4126\left(\sigma^{2}\right)=\frac{1}{49}\left(410900000-\frac{143300^{2}}{50}\right) \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 [3] } \end{aligned}$ | Accept 143300/50 o.e. <br> Correct subst in correct formula |
| (ii) $\quad \mathrm{H}_{0}$ : Pop mean (or $\left.\mu\right)=2850$ <br> $\mathrm{H}_{1}$ : Pop mean ( or $\mu$ ) $\neq 2850$ $\frac{\frac{143300}{50}-2850}{\sqrt{\sqrt{\prime 4126.53^{\prime}}}} \frac{\sqrt{50}}{}$ $=1.761$ $' 1.761 '<1.96$ <br> No evidence mean distance changed | B1 <br> M1 <br> A1 <br> M1 <br> Alf <br> [5] | Both. Not just 'mean' <br> Allow '4126.53' without $\sqrt{ }$, but must have all $\sqrt{50}$ <br> Or correct c.v. (2867.81) for alt method For valid comparison of z values, areas or c.v. <br> Dep 1.96; ft their 1.761 <br> If $\mathrm{H}_{1}: \mu>2850$ and c.f. 1.645, <br> $\max$ B0M1A1M1A0 <br> (c.v. for 1 tail test 2864.94) |
| 4 (i) $\begin{aligned} & \lambda=2.8 \\ & \mathrm{e}^{-2.8}\left(1+2.8+\frac{2.8^{2}}{2}\right) \\ & =0.469(3 \text { s.f. }) \text { or } 0.47(0) \end{aligned}$ | B1 <br> M1 A1 [3] | seen <br> any $\lambda$ allow one end error As final answer |
| (ii) $\begin{array}{ll} \mathrm{e}^{-0.7 n} \geqslant 0.99 & \text { or } \mathrm{e}^{-\lambda} \geqslant 0.99 \\ -0.7 n \geqslant \ln 0.99 & \text { or }-\lambda \geqslant \ln 0.99 \\ n \leqslant 0.01436 & \text { or } \lambda \leqslant 0.01005 \\ { }^{0.01436} \times 150 \\ \text { or }{ }^{\prime} 0.01005 & \\ \text { Max period is } 2.150 \div 0.7 \\ \text { mins }(3 \mathrm{sf}) \end{array}$ | $\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & {[5]} \end{array}$ | Allow ' $=$ ' throughout <br> Attempt ln both sides <br> Can be implied. Accept 3 s.f. <br> Note $\mathrm{e}^{-(0.7 / 150) n} \geqslant 0.99$ scores $1^{\text {st }}$ and $3^{\text {rd }}$ M1 T \& I leading to ans 2.2 mins, SC : B2 |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 71 |


| 5 (i) | $\begin{aligned} & \int_{0}^{2} k(x-2)^{2} \mathrm{~d} x=1 \\ & \left(\left[\frac{k(x-2)^{3}}{3}\right]_{0}^{2}=1\right) \\ & k\left[0-\left(-\frac{8}{3}\right)\right]=1 \\ & k=\frac{3}{8} \mathbf{A G} \end{aligned}$ | M1 <br> A1 <br> [2] | Attempt to integrate $\mathrm{f}(x)$ with correct limits and $=1$ <br> Must see this line or better, e.g. $k \times \frac{8}{3}=1$ |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \frac{3}{8} \int_{d}^{2}(x-2)^{2} \mathrm{~d} x=0.2 \\ & \left(\frac{3}{8}\left[\frac{(x-2)^{3}}{3}\right]_{d}^{2}=0.2\right) \\ & \frac{3}{8}\left[0-\frac{(d-2)^{3}}{3}\right]=0.2 \text { oe } \\ & \left((d-2)^{3}=-1.6\right) \\ & d=0.83(0)(3 \text { s.f. }) \end{aligned}$ | M1 A1 | $\int \mathrm{f}(x) \mathrm{d} x$ with limits d and 2 or 0 and d , and $=0.2$ or $=0.8$ <br> Condone missing ' k ' <br> Reasonable attempt to integrate from a correct expression, with limits substituted to give expression in $\mathrm{d}^{3}$. <br> Condone missing ' $k$ ' |
| (iii) | $\begin{aligned} & \frac{3}{8} \int_{0}^{2} x(x-2)^{2} \mathrm{~d} x \\ & \left(=\frac{3}{8} \int_{0}^{2} x^{3}-4 x^{2}+4 x \mathrm{~d} x\right) \\ & =\frac{3}{8}\left[\frac{x^{4}}{4}-\frac{4 x^{3}}{3}+2 x^{2}\right]_{0}^{2} \\ & =\frac{1}{2} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \\ & \hline \end{aligned}$ | Attempt integ $x \mathrm{f}(x)$; ignore limits, condone missing k $\begin{aligned} & \left(\frac{3}{8}\left[x \times \frac{(x-2)^{3}}{3}-\int \frac{(x-2)^{3}}{3} \mathrm{~d} x\right]_{0}^{2}\right) \\ & =\frac{3}{8}\left[x \times \frac{(x-2)^{3}}{3}-\frac{(x-2)^{4}}{12}\right]_{0}^{2} \end{aligned}$ <br> Correct integration \& limits, condone missing k |
| 6 (i) | $\begin{aligned} & \mathrm{P}(\text { Type } \mathrm{I})=1-\mathrm{P}(\geq 4 \text { assuming } p=0.7) \\ & 1-\left({ }^{6} \mathrm{C}_{4} \times 0.7^{4} \times 0.3^{2}+{ }^{6} \mathrm{C}_{5} \times 0.7^{5} \times 0.3\right. \\ & \left.+0.7^{6}\right) \\ & (=1-0.744) \\ & =0.256 \text { (3 s.f.) } \end{aligned}$ | M1 <br> M1 <br> A1 <br> [3] | or $\mathrm{P}(\leq 3$ assuming $p=0.7) \quad$ May be implied ${ }^{6} \mathrm{C}_{3} \times 0.7^{3} \times 0.3^{3}+{ }^{6} \mathrm{C}_{2} \times 0.7^{2} \times 0.3^{4}+{ }^{6} \mathrm{C}_{1} \times 0.7 \times 0.3^{5}$ $+0.3^{6}$ <br> Allow one end error $=0.256 \text { (3 s.f.) }$ <br> SR if zero scored allow B1 for use of $B(6,0.7)$ in any two or more terms |
| (ii) | $\begin{aligned} & \mathrm{P}(\text { Type II })=\mathrm{P}(\geqslant 4 \text { assuming } p=0.35) \\ & ={ }^{6} \mathrm{C}_{4} \times 0.35^{4} \times 0.65^{2}+ \\ & { }^{6} \mathrm{C}_{5} \times 0.35^{5} \times 0.65+0.35^{6} \\ & =0.117 \end{aligned}$ | M1 <br> M1 <br> A1 [3] | May be implied <br> Allow one end error <br> SR if zero scored allow B 1 for use of $\mathrm{B}(6,0.35)$ in any two or more terms |
| (iii) | Type 1 <br> They will reject Luigi's belief, although it might be true. | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ | In context |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 71 |


| 7 (i) | $\begin{aligned} & \mathrm{N}(10.61,0.1017) \\ & \frac{111^{\prime} 10.61^{\prime}}{\sqrt{ } 0.1017^{\prime}}(=1.223) \\ & \Phi\left({ }^{\prime} 1.223^{\prime}\right) \\ & =0.889(3 \text { s.f. }) \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | o.e. Stated or implied (accept in un-simplified form) <br> Allow without $\sqrt{ }$ <br> For attempt to find correct area consistent with their working |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \mathrm{P}(K-1.2 A>0) \\ & \operatorname{Var}=0.0576+1.2^{2} \times 0.0441 \\ & (=0.121104) \\ & \mathrm{N}(-0.324,0.121104) \\ & \frac{0-(-0.324)}{\sqrt{ }{ }^{0.121104^{\prime}}}(=0.931) \\ & 1-\Phi\left({ }^{‘} 0.9311^{\prime}\right) \\ & =0.176(3 \text { s.f. }) \end{aligned}$ | M1 <br> B1 B1 <br> M1 <br> M1 <br> A1 [6] | Or similar stated or implied <br> o.e. May be implied (accept in un-simplified form) <br> Allow without $\sqrt{ }$ <br> For attempt to find correct area consistent with their working |

