0700 + 12 ma	71
9709 WIS US	/ 1

Pa	nge 4	Mark Scl	Mark Scheme			Syllabus	Paper		
	GCE A LEVEL – Octob			ovem	ber 2013	9709	71		
1 $\lambda =$	$\frac{1}{30}$		B1		o.e				
$ \frac{10}{1 - e^{-\frac{1}{30}}} = 0.0328 \text{ (3 s.f.)} $			M1 M1 A1	[4]	$1 - P(X=0)$ by Poisson, any λ allow 1 end $1 - P(X=0)$ by Poisson, correct λ no end e S.R. Binomial with final answer 0.0328 B Correct answer, no working scores B2				
2 z = 2	2 $z = 2.576$				Seen (accept 2.	n (accept 2.574 to 2.579)			
$2 \times z \times \frac{0.17}{\sqrt{n}} = 0.2$ oe $n = (\frac{2 \times 0.17 \times 2.576}{0.2})^2$ oe (= 19.2)			M1		Allow without	'2 ×' OR with incorrect z			
			M1		Attempt to arra	nge equ of correct form (with			
Sma	allest <i>n</i> is 20)	A1	[4]	correct z and '2	$n = or \sqrt{n} =$			
3 (i)	est $(\mu) = 2$	866 or 2870 (3 s.f.)	B1		Accept 143300	/50 o.e.			
	est $(\sigma^2) =$	$\frac{1}{49}\left(410900000 - \frac{143300^2}{50}\right)$			Correct subst in	n correct formula			
	(= 4126.53 = 4130 (3	3) sf)	A1	[3]					
(ii)	H ₀ : Pop m H ₁ : Pop m $\frac{143300}{50} - 2$ $\frac{\sqrt{4126.5}}{\sqrt{50}}$ = 1.761 '1.761' < No eviden	ean (or μ) = 2850 ean (or μ) \neq 2850 2850 $\overline{3'}$ 1.96 ce mean distance changed	B1 M1 A1 M1 A1f	[5]	Both. Not just Allow '4126.53 $\sqrt{50}$ Or correct c.v. For valid comp Dep 1.96; ft the If H ₁ : $\mu > 2850$ max B0M1A11 (c.v. for 1 tail t	'mean' 3' without $$, bu (2867.81) for alt r parison of z values eir 1.761 and c.f. 1.645, M1A0 est 2864.94)	nt must have all nethod , areas or c.v.		
4 (i)	$\lambda = 2.8$	2.8^{2}	B1		seen				
	$e^{-2.8}(1+2)$ = 0.469 (3)	$.8 + \frac{2.0}{2}$) s.f.) or 0.47(0)	M1 A1	[3]	any λ allow on As final answe	e end error r			
(ii)	$e^{-0.7n} \ge 0.9$ -0.7n $\ge 1n$ $n \le 0.014$ '0.01436'	$\begin{array}{ll} 09 & \text{or } e^{-\lambda} \ge 0.99 \\ 10.99 & \text{or } -\lambda \ge \ln 0.99 \\ 36 & \text{or } \lambda \le 0.01005 \\ \times 150 \end{array}$	M1 M1 A1		Allow '=' throu Attempt ln both Can be implied	ughout h sides l. Accept 3 s.f.			
	or '0.0100 Max perio	5' × 150 ÷ 0.7 d is 2.15 mins (3 sf)	M1 A1	[5]	Note $e^{-(0.7/150)t}$ T & I leading t	$a^{t} \ge 0.99$ scores 1^{st} o ans 2.2 mins, SC	and 3 rd M1 C: B2		

			9709_w13_m						
	Page 5	Mark Sc	Mark Scheme				Paper		
		GCE A LEVEL – Octob	ber/N	ovem	ber 2013	9709	71		
			1						
5 (i)	$\int_{0}^{2} k(x-2)^{2} dx = 1$ $\left(\left[\frac{k(x-2)^{3}}{2} \right]^{2} = 1 \right)$		M1		Attempt to inte and $= 1$	Attempt to integrate $f(x)$ with correct limits $nd = 1$			
	$k \begin{bmatrix} 0 - \left(-\frac{8}{3}\right) \\ k = \frac{3}{8} \text{ AG}$	[0] = 1	A1	[2]	Must see this l	ine or better, e.g. i	$k \times \frac{8}{3} = 1$		
(ii)	$\frac{\frac{3}{8}\int_{d}^{2}(x-2)}{(\frac{3}{8}\left[\frac{(x-2)}{3}\right]}$	$(x^{2})^{2} dx = 0.2$ $\frac{3}{d} = 0.2$	M1		$\int f(x) dx$ with limits d and 2 or 0 and d, and = 0.2 or =0.8 Condone missing 'k'				
	$\frac{3}{8} \begin{bmatrix} 0 - \frac{(d)}{2} \\ ((d-2)^3 = d = 0.83) \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\left[\frac{-2)^3}{3}\right] = 0.2$ oe = -1.6) (3 s.f.)	M1 A1	[3]	Reasonable att expression, wit expression in c Condone missi	empt to integrate the limits substitute ¹³ . ing 'k'	from a correct ed to give		
(iii)	$\frac{3}{8} \int_{0}^{2} x(x-2) \\ (= \frac{3}{8} \int_{0}^{2} x^{3} - \frac{3}{8} \int_{0}^{2} \frac{x^{4}}{4} - \frac{3}{8} \\ = \frac{3}{8} \left[\frac{x^{4}}{4} - \frac{3}{8} \right] \\ = \frac{1}{2}$	$(2)^{2} dx$ $4x^{2} + 4x dx)$ $\frac{4x^{3}}{3} + 2x^{2} \Big]_{0}^{2}$	M1 A1 A1	[3]	Attempt integ is missing k $\left(\frac{3}{8}\left[x \times \frac{(x-2)^3}{3}\right]\right)$ $=\frac{3}{8}\left[x \times \frac{(x-2)^3}{3}\right]$ Correct integra	$xf(x); \text{ ignore limits}$ $-\int \frac{(x-2)^3}{3} dx \Big]_0^2 $ $-\frac{(x-2)^4}{12} \Big]_0^2$ $\text{ation \& limits, constants}$	s, condone done missing k		
6 (i)	P(Type I) $1-({}^{6}C_{4} \times ($ $+ 0.7^{6})$ (= 1 - 0.74 = 0.256 (3)	= 1 - P(\geq 4 assuming p = 0.7) 0.7 ⁴ ×0.3 ² + ⁶ C ₅ × 0.7 ⁵ × 0.3 44) s.f.)	M1 M1 A1	[3]	or P(\leq 3 assum ⁶ C ₃ ×0.7 ³ ×0.3 ³ + + 0.3 ⁶ Allow one end = 0.256 (3 s.f.) SR if zero scor in any two or r	hing $p = 0.7$) Ma $+^{6}C_{2} \times 0.7^{2} \times 0.3^{4} + ^{6}C_{2}$ error red allow B1 for u nore terms	by be implied $C_1 \times 0.7 \times 0.3^5$ se of B(6, 0.7)		
(ii)	$P(Type II) = {}^{6}C_{4} \times 0.1 \\ {}^{6}C_{5} \times 0.2 \\ = 0.117$	$P (\geq 4 \text{ assuming } p = 0.35)$ $35^4 \times 0.65^2 + 0.35^5 \times 0.65 + 0.35^6$	M1 M1 A1	[3]	May be implie Allow one end SR if zero scor in any two or r	d error red allow B1 for u nore terms	se of B(6, 0.35)		
(iii)	Type 1 They will it might be	reject Luigi's belief, although e true.	B1 B1	[2]	In context				

			9709 w13 ms 71					
Page 6 Mar		Mark So	cheme		Syllabus	Paper		
GCE A LEVEL – Octol			ber/Noverr	ber 2013	9709	71		
7 (i)) N(10.61, 0.1017) $\frac{11-10.61'}{\sqrt{0.1017'}}$ (= 1.223) $\Phi(^{1.223'})$ = 0.889 (3 s.f.)			o.e. Stated or in form) Allow without For attempt to their working	or implied (accept in un-simplified hout $$ of to find correct area consistent with ing			
(ii)	P(K - 1.2A > 0) Var = 0.0576 + 1.2 ² × 0.0441 (= 0.121104) N(-0.324, 0.121104) $\frac{0 - (-0.324)}{\sqrt{0.121104'}}$ (= 0.931) 1 - $\Phi(`0.931')$ = 0.176 (3 s.f.)		M1 B1 B1 M1 M1 A1 [6]	Or similar state o.e. May be im form) Allow without For attempt to their working	ited or implied mplied (accept in un-simplified at $$ o find correct area consistent with			