Page 4 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2013	9709	63

1 bars are not touching oe Area not rep by frequency, not used fd, not labelled fd	B1 $\text { B1 } 2$	Sensible reason involving not touching, no gaps, class boundaries, group data not continuous (may be the negative) Must be frequency density oe. Wrong height not sufficient. (Best 2 reasons awarded)
$\begin{aligned} & \mathbf{2} \\ & \begin{aligned} & P(13.6<X<14.8)=P\left(\frac{13.6-14}{0.52}<z<\frac{14.8-14}{0.52}\right) \\ & \quad=\mathrm{P}(-0.7692<\mathrm{z}<1.538) \\ & \quad=\Phi(1.538)-[1-\Phi(0.7692)] \\ & \quad=0.9380-[1-0.7791] \\ &= 0.7171 \\ & \mathrm{P}(8)=(0.7171)^{8}(0.2829)^{2}{ }_{10} \mathrm{C}_{8} \\ & \quad=0.252 \end{aligned} \end{aligned}$	M1 M1 A1 M1 A1 5	Standardising 1 expression, no cc, no sq rt, no sq, \pm, mean on num. $\Phi 1+\Phi 2-1$ (indep) oe ($\Phi 2$ - $\Phi 1$ if cc used) Correct probability rounding to 0.72 here Binomial expression $10 \mathrm{C} 8 \mathrm{p}^{8} \mathrm{q}^{2}, \Sigma \mathrm{p}+\mathrm{q}=1$, any p Correct answer (rounding to 0.252)
3 (i) $\begin{aligned} & (p=) 0.85 \\ & \mathrm{P}(<12)=1-\mathrm{P}(12,13,14) \\ & =1-\left[(0.85)^{12}(0.15)^{2}{ }_{14} \mathrm{C}_{12}+\right. \\ & \left.(0.85)^{13}(0.15)_{14} \mathrm{C}_{13}+(0.85)^{14}\right] \\ & \quad=1-0.6479 \\ & \quad=0.352 \end{aligned}$	B1 M1 A1 3	($p=$) 0.85 oe seen anywhere Summing 2 or 3 consistent bin probs, any $p<1, n=14$ (or summing 12 or 13 consistent bin probs) Correct answer
$\text { (ii) } \begin{aligned} (0.85)^{n} & \geqslant 0.1 \\ n & \leqslant 14.2 \\ n & =14 \end{aligned}$	M1 M1 $\text { A1 } 3$	Eqn or inequality in 0.85 (or 0.15), $n, 0.1, n$ as a power Attempt to solve (can be implied) if n a power Correct answer - must be equals, not approx. MR allowed for 0.01, M1M1A0 max.
4 (i) $(220 \times 20+118 \times 25) / 45$ $=163$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \mathbf{2} \end{array}$	Mult by 20 and 25 and dividing their sum by 45 Correct answer, 163.3 or 490/3 oe acceptable
$\text { (ii) } \begin{aligned} & \Sigma x_{o}{ }^{2} / 20-220^{2}=32^{2} \\ & \Sigma x_{o}{ }^{2}=988480 \\ & \\ & \Sigma x_{l}{ }^{2} / 25-118^{2}=12^{2} \\ & \Sigma x_{l}{ }^{2}=351700 \\ & \\ & \\ & \Sigma x_{o}{ }^{2}+\Sigma x_{l}{ }^{2}=1340180 \\ & \text { New var }=1340180 / 45-(7350 / 45)^{2} \\ & =3100-3120 \end{aligned}$	M1 A1 A1 M1 A1 5	Subst in correct variance formula Correct $\Sigma x_{0}{ }^{2}$ correct Σx_{1}^{2} Subst their combined results in correct var formula Correct answer

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2013	9709	63

5 (a) $\begin{aligned} & \mathrm{P}(X<q+82)=0.72 \\ & \quad z=0.583 \\ & \frac{ \pm q}{7.4} \text { or } \frac{ \pm 2 q}{7.4}=\text { z or probabilty }(\text { o.e. }) \\ & q=4.31 \end{aligned}$	M1 M1 A1 3	Rounding to ± 0.58 or ± 0.15 seen Standardising, no cc, no sq, no sq rt correct answer
(b) $\begin{aligned} & \frac{0.5 \mu-\mu}{\sigma}=\frac{ \pm 0.5 \mu}{\sigma} \\ & \frac{0.2 \sigma^{2}}{\sigma}=-0.2 \sigma=-0.580 \end{aligned}$ $\begin{aligned} \sigma & =2.90 \\ \mu & =3.36 \end{aligned}$	M1 B1 M1 $\text { A1 } 4$	Standardising attempt some μ / σ allow $\mathrm{cc}, \mathrm{sq} \mathrm{rt}$, sq Can be implied ± 0.580 seen (accept ± 0.58) substituting to eliminate μ or σ, arriving at numerical solution, any z value or probability not dependent both answers correct , accept 2.9
$\begin{array}{rrr} 6 & \text { (i) } \begin{array}{l} \frac{8!}{3!2 \cdot 2!} \\ \\ \\ \end{array}=1680 \end{array}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	8 ! Divided by at least one of $3!2!2$! oe Correct answer
(ii) 5 ! $=120$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \mathbf{2} \end{array}$	5 ! Seen (not added, may be divided/multipled) Correct answer
(iii) $\frac{5!4!}{3!2!2!}$ $=120$	B1 M1 $\text { A1 } 3$	5 ! Or 4! Seen in sum or product in numerator (denominator may by 1) $\frac{k 5!4!}{3!2!2!}$ in a numerical expression Correct final answer
(iv) GG with AA, AE, EE, RA, RE, RT, TA, TE, $=8$ ways GGG with $\mathrm{A}, \mathrm{E}, \mathrm{R}, \mathrm{T}=4$ ways Total $=12$ ways	M1 A1 A1 3	Summing 2 options (could be lists) 1 correct option Correct answer

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	63

