Page		e 4 Mark Scheme						9709 Svilabus	<u>w13 ms 62</u> Paper	
raye 4		ye -	GCE AS/A LEVEL -	- October/N	lover	mbe	r 2013	9709	62	
I				0010501/11	10101		2010	0100	02	
1	$P(x < -2.4) = P\left(z < \frac{-2.4 - 1.5}{3.2}\right)$		Ν	M 1		Standardising no cc can have sq				
	= P(z < -1.219) = 1 - 0.8886			Ν	M 1		Correct area, i.e. < 0.5			
	= 0.111			А	41	[3]	Correct answer rounding to 0.111			
2	(i)	$P(C \cap <$	$50) = 0.35 \times 0.2 = 0.07$	В	31	[1]				
	(ii)	i) $P(C \mid <50) = \frac{P(C \cap <50)}{P(<50)}$			M 1	[4]	Summing three 2-factor products seen anywhere (can omit the 1)			
		$= \frac{0.35 \times 0.2}{0.25 \times 0.3 + 0.35 \times 0.2 + 0.4(\times 1)}$			A 1		0.545 (unsimplified) seen as num or denom of a fraction			
		$=\frac{0.07}{0.545}$			M 1		Attempt at $P(C \cap < 50)$ as 2-factor proof only seen as num or denom of a fraction			
		= 0.128 (14/109)	А	41		Correct an	swer		
3	(i)	(i) $z = 0.878$			31		$\pm 0.878, 0.88$, rounding to 0.88 seen			
		$\frac{190-16}{\sigma}$	$\frac{0}{-}=0.878$	Ν	M 1		(190 – 160	5		
		$\sigma = 34.2$		А	41	[3]	Correct an	swer		
	(ii)	P(at least	(1) = 1 - P(0)	N	М1		Using $1 - P(0)$, $1 - P(0, 1)$, P(1,2 12) or P(2, 12) with $p = 0.19$ or 0.81, terms must be evaluated to get the M1			
		= 1 - (0.8)	$(0.81)^{12} = 0.920$ A1 [2] Correction		Correct an	prrect answer accept 0.92				
4	(i)	number =	$= 1.5 \times 50 = 75$ (AG)	В	31	[1]	Must see 1	1.5×50		
	(ii)	freqs are	10, 25, 50, 75, 30 (15, 15)	N	M1		Attempt at freqs not fd Correct freqs attempt at mid points not cw or ucl			
		Mean = (+ 75 \times 22	$(10 \times 125 + 25 \times 162.5 + 50)$ $(25 + 30 \times 300)/190$	0×187.5	M1				w or ucb or lcb	
		= 40562.	5/190 = 213 (213.48)	А	A 1		correct me	ean		
		$sd^2 = 10 + 75 \times 22$	$ \times 125^{2} + 25 \times 162.5^{2} + 50 25^{2} + 30 \times 300^{2})/190 - (213)^{2} $	$\times 187.5^2$ N $(3.48)^2$	M 1		subst their formula	$\Sigma f x^2$ in correct v	variance	
		sd = 46.5	or 46.6	А	A 1	[6]				
	(iii)	have used not the ra	d the mid-point of each into w data	erval and B	31	[1]				

		_				ſ	9709	<u>w13_ms_62</u>
Page 5		ge 5	Mark Scher	Syllabus	Paper			
			GCE AS/A LEVEL – Octobe	9709	62			
5	(i)	$P(4, 5, 6) = (0.22)^4 (0.78)^4 8C4 + (0.22)^5 (0.78)^3 8C5 + (0.22)^6 (0.78)^2 8C6$		M1 M1		Bin term with ${}_{8}C_{r} p^{r} (1-p)^{8-r}$ seen $r \neq 0$ any $p < 1$ Summing 2 or 3 bin probs $p = 0.22$, n = 8		
		= 0.0763		A1	[3]	Correct answer		
	(ii)	prob = 0.13 mean = 300 × 0.13 = 39 var = 300 × 0.13 × 0.87 = 33.93				Correct prob can be implied Correct unsimplified np and npq ft wrong 0.13		
		P(30 < x < 50) = P				Standardising a value need sq rt		
		$\left(\frac{30.5 - 39}{\sqrt{33.93}} < z < \frac{49.5 - 39}{\sqrt{33.93}}\right)$				Cont corre only	or 48.5/49.5	
		= P(-1.45) $= \Phi(1.80)$ = 0.9643	592 < z < 1.8026) $26) + \Phi(1.4592) - 1$ + 0.9278 - 1 = 0.892	M1 A1	[6]	Correct area $\Phi_1 + \Phi_2 - 1$ oe Rounding to correct answer SC P(31,49)=300C31(0.13) ³¹ (0.87) ²⁶⁹ + +300C49 etc.) B1B1		
6	(i)	1663200		B1	[1]			
	(ii)	M xxxxx	xxxx M	M1		9! or 9P9 seen		
		Number	of ways = $\frac{9!}{3!2!} = 30240$	A1	[2]	Correct answer		
	(iii)	4 vowels	together = $8! \times 4/2!2!$ = 40320	M1 M1		8!/2!2! seen mult by something 4 oe 4!/3! or 4C1 etc. seen mult by something		
		1663200	-40320 = 1622880	B1	[3]	Correct answer SC 7!/2!2! × 8P4 or 7! × 8P4/3! Or 7!/2!2! × 8P4/3! M1		
	(iv)	Exactly 2 Exactly 3 Total	2 Es 4C2 = 6 3 Es 4C1 = 4 = 10 ways	M1 B1 A1	[3]	Summing 2 One option Correct and	2 options n correct swer	
		OR 5C2 = 10		M2 A1		M1 for k5C2 Correct ans		

9709_w13_ms								
Pa	ge 6	Mark Schem	Syllabus	Paper				
		GCE AS/A LEVEL – October	9709	62				
7 (i)	(i) options $(3, 4, 4)$ or $(4, 3, 4)$ or $(4, 4, 3)$ Probs $(4/10 \times 6/9 \times 5/8) \times 3C1$ = 360/720 = $\frac{1}{2}$ AG		M1 M1		Summing three 3-factor options oe $10 \times 9 \times 8$ seen in denom			
			A1	[3]	Correct answer			
	$OR \frac{{}_{6}C_{2} \times_{4} C_{1}}{{}_{10}C_{3}} = \frac{1}{2} AG$				One of 6C2 or 4C1 seen in num 10C3 in denom Correct answer			
(ii)			B1	[4]	9, 10, 11,	12 only seen		
sum Prob	9 24/72	10 11 12 0 216/720 360/720 120/720	B1		One correct or without	One correct prob other than P(11), with or without replacement		
	P(3, 3, 3) P(3, 3, 4) = 216/72	$= 4/10 \times 3/9 \times 2/8 = 24/720 (1/30)$ = 4/10 × 3/9 × 6/8 × 3C1 0 (3/10)	B1		Another c	orrect prob		
	P(4, 4, 4)	$= 6/10 \times 5/9 \times 4/8 = 120/720(1/6)$	B1		Σ all 4 pro	bbs = 1		
(iii)	$\mathbf{P}(R)=0.$	$5 P(S) = 0.4 P(R \cap S) = 120/720$	B1 M1	[3]	$P(R \cap S) = 120/720 (1/6)$ Numerical attempt to compare P(<i>R</i> and <i>S</i>			
	$P(R \cap S) =$ Not indep	$= 120/720 \neq P(R) \times P(S)$	A1ft		with $P(R) \times P(S)$ provided $P(R \cap S) \neq 1/5$ Correct conclusion ft wrong $P(R \cap S) \neq 1/5$, $P(S)$ correct			
(iv)	$P(R \cap S) \neq$ and S (34 Not exclu	= 0 or there is an overlap between R ,4) usive $\Sigma x f/\Sigma f$	B1ft	[1]	Correct an reasoning	iswer following of ft wrong non zer	correct o $P(R \cap S)$	