Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	61

| 1 |
| :--- | :--- | :--- | :--- |

9709 w13 ms 61

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2013	9709	61

$\begin{aligned} & 5 \quad \text { (i) } \quad \begin{array}{l} z \\ \\ \\ \\ \\ \\ \\ \\ \\ c \end{array}=-1.4 .406 \\ & \hline=9.14 \end{aligned}$	$\begin{array}{ll} \text { B1 } \\ \text { M1 } \\ \text { A1 } & \mathbf{3} \end{array}$	Rounding to ± 1.41 seen Standardising allow sq rt no cc Correct answer
$\text { (ii) } \begin{aligned} & \mathrm{P}\left(\frac{15-14.2}{3.6}\right)<z<\left(\frac{16-14.2}{3.6}\right) \\ &=\Phi(0.5)-\Phi(0.222) \\ &=0.6915-0.5879 \\ &=0.1036 \\ & \mathrm{P}(\text { at least } 2)=1-\mathrm{P}(0,1) \\ &=1-(0.8964)^{7}-(0.8964)^{6}(0.1036)_{7} \mathrm{C}_{1} \\ &=1-0.8413 \\ &=0.159 \end{aligned}$	M1 M1 A1 M1 M1 A1 6	2 attempts at standardising no cc no sq rt Subt two Фs (indep mark) Needn't be entirely accurate, rounding to 0.10 Binomial term with ${ }_{7} \mathrm{C}_{\mathrm{r}} p^{\mathrm{r}}(1-p)^{7 \mathrm{r}}$ seen $r \neq 0$ any $p<1$ $1-\mathrm{P}(0), 1-\mathrm{P}(1), 1-\mathrm{P}(0,1)$ seen their p Correct answer accept 3 sf rounding to 0.16
6 (i) $\begin{array}{lll} \mathrm{M} & \mathrm{R} & \mathrm{O} \\ 3 & 1 & 2=7 \mathrm{C} 3 \times 5 \mathrm{C} 1 \times 8 \mathrm{C} 2=4900 \\ & & \\ 3 & 2 & 1=7 \mathrm{C} 3 \times 5 \mathrm{C} 2 \times 8 \mathrm{C} 1=2800 \\ 2 & 2 & 2=7 \mathrm{C} 2 \times 5 \mathrm{C} 2 \times 8 \mathrm{C} 2=5880 \\ \text { Total }=13580 \end{array}$	M1 M1 A1 A1 4	Summing more than one 3term option involving combs (can be added) Mult 3 combs only (indep) 1 option correct unsimplified Correct answer
(ii) 4 groups in 4! ways 3 mountain in 3! ways 2 ordinary in 2 ! ways $4!\times 3!\times 2=288$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4 ! seen mult by something Mult by 3 ! for racing or 2 ! for ordinary Correct answer
(iii) e.g. s OxxxxOsss Ordinary in 2 ! Rest of bikes in 4! Bikes and spaces 5 groups in 5 ways $2!\times 4!\times 5=240$	$\begin{array}{ll} \text { M1 } \\ \text { M1 } \\ \text { A1 } & \mathbf{3} \end{array}$	2 ! or 4 ! seen mult Mult by 5 (ssssb) Correct answer

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	61

(i)		$\begin{aligned} & \text { hrow } \\ & {[, 1)=} \end{aligned}$		$\begin{aligned} & \text { n sma } \\ & \times 1 / 4= \end{aligned}$		$\begin{aligned} & \text { core } \\ & \text { AG } \end{aligned}$			$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Or equivalent
	$P(3)$ from two dice $=2 / 16$ seen$\begin{aligned} & \mathrm{P}(\mathrm{H}, 3)=1 / 2 \times 2 / 16=2 / 32 \\ & \mathrm{P}(\mathrm{~T}, 3)=1 / 2 \times 1 / 4=1 / 8 \\ & \text { So } \mathrm{P}(3)=6 / 32=3 / 16 \quad \mathrm{AG} \end{aligned}$								B1 M1 A1 A1	4	From $(1,2)$ and $(2,1)$ Summing $\mathrm{P}(\mathrm{H}, 3)$ and $\mathrm{P}(\mathrm{T}, 3)$ One correct Correct answer must see clear reasoning
(iii)									B1 B1 B1		One correct prob A second correct prob A third correct prob
X	1	2	3	4	5	6	7	8			
Prob		5/32		7/32		3/32				3	
(iv) $\mathrm{P}(Q \cap R)=0$ or 'if you throw a tail you can't get a 7' Yes they are exclusive									M1 A1dep	2	Stating $\mathrm{P}(Q \cap R)=0$ or implying by words Dep on previous M

