9709 w13 ms 4							
Page 4 Mark Schem					Syllabus	Paper	
	GCE AS/A LEVEL – October/November 2013			9709	42		
1			M1		For resolving force line of greatest slop	es parallel to the	
	App T co	lying s $\beta = W \sin \alpha$	A1		T (24/25) = 5.1 (8/17) or T cos 16.26 = 5.1 sin 28.07		
	Tens	sion is 2.5 N	A1	3			
First Alterna	tive N	Aarking Scheme					
			M1		For resolving force horizontally	s vertically or	
	App R cc R sin	lying $a = T \sin (\alpha + \beta) = W$ and $a = T \cos (\alpha + \beta)$	A1		$R \cos 28.07 + T \sin 28.07 = T \cos $	n 44.33 = 5.1 5 44.33	
	Tens	sion is 2.5 N	A1	3			
Second Alter	nativ	e Marking Scheme					
			M1		Using Triangle of f	orces	
	App T / s	lying in $\alpha = 5.1 / \sin(90 + \beta)$	A1		$T / \sin 28.07 = 5.1$	/ sin 106.26	
	Tens	sion is 2.5 N	A1	3			

2		M1		For using KE = $\frac{1}{2}$ m v ² or WD = F d cos α
	Gain in KE = $\frac{1}{2} 25 \times 3^2$ or WD by pulling force = $220 \times 15 \cos \alpha$	A1		
	WD by pulling force = $220 \times 15 \cos \alpha$ or Gain in KE = $\frac{1}{2} 25 \times 3^2$	B1		
	$[3300 \cos \alpha = 112.5 + 3000]$	M1		For using WD by pulling force = KE gain + WD against resistance
	$\alpha = 19.4$	A1	5	

							9709	<u>9 w13 ms 4</u> 2
	Page 5		Mark Sch	neme			Syllabus	Paper
			GCE AS/A LEVEL – Octo	ber/Novembe	r 201	3	9709	42
3	(i)			M1		F 1a	For using $F = P/v$ a aw with $a = 0$	and Newton's 2 nd
		100/	$4 - 4k = 0 \rightarrow k = 6.25$	A1	2	A	AG	
	(ii)			M1		F a	For using Newton' $a = 0$ uphill $\rightarrow 3$ te	s 2 nd law with rm equation
		100/	$v - 70g \times 0.05 - 6.25v = 0$	A1				
		[6.2 [v ² -	$5v^2 + 35v - 100 = 0$] or + 5.6v - 16 = 0]	M1		F	For solving a 3-tern	m quadratic for v
		Max	simum speed is 2.08 ms ^{-1}	A1	4			

				-
4		M1		For resolving three forces parallel to the plane
	$0.6g\sin\alpha = F + P\cos\alpha$	A1		Value of α used or values of sin α and cos α used
		M1		For resolving three forces perpendicular to the plane
	$R = 0.6g \cos \alpha + P \sin \alpha$	A1		Value of α used or values of sin α and cos α used
		M1		For using $F = \mu R$
	$0.6g \sin \alpha - P \cos \alpha = 0.4 (0.6g \cos \alpha + P \sin \alpha)$	A1		Value of α used or values of sin α and cos α used
	6(12/13) - P(5/13) = 2.4(5/13) + 0.4P(12/13)	M1		For solving the resultant equation for P
	P = 6.12	A1	8	

		970	9 w13 ms 4	2
Page 6	Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL – October/November 2013	9709	42	ĺ

Alternative Marking Scheme									
		M1		For resolving three forces vertically					
	$W = R \cos \alpha + F \sin \alpha$	A1		Value of α used or values of sin α and cos α used					
		M1		For resolving three forces horizontally					
	$P = R \sin \alpha - F \cos \alpha$	A1		Value of α used or values of sin α and cos α used					
		M1		For using $F = \mu R$ in both equations					
	0.6g = R(5/13) + 0.4R(12/13) and P = R(12/13) - 0.4R(5/13)	A1		Value of α used or values of sin α and cos α used					
	78 = R(5 + 4.8) and 13P = R(12 − 2) \rightarrow 13P = (78 ÷ 9.8) × 10	M1		For finding R and substituting into an expression for P					
	P = 6.12	A1	8						

5	(i)	$[s = t^2/2 - 0.1t^3/3]$	M1*		For integrating to find s for $0 \le t \le 5$
		$[s_1 = 25/2 - 0.1 \times 125/3]$	DM1*		For obtaining s_1 by using limits 0 to 5 or having zero for constant of integration (can be implied) and substituting $t = 5$
		$s_1 = 8.33$	A1	3	
	(ii)			M 1	For using $s = v(5) \times (45 - 5)$ for $5 \le t \le 45$
		$s_2 = 2.5 \times 40$	A1		
		$[s = 9t^2/2 - 0.1t^3/3 - 200t$ for $45 \le t \le 50]$			For integrating to find s for $45 \le t$ ≤ 50 and implying the use of limits 45 and 50 or equivalent via constant of integration
			M1		Ū.
		$s_3 = [9(50)^2 / 2 - 0.1(50)^3 / 3 - 200(50)] - [9(45)^2 / 2 - 0.1(45)^3 / 3 - 200(45)]$	A1		For applying the limits at 45 and 50 correctly or equivalent via constant of integration
		[= 8.33]			

		970	9 w13 ms 42
Page 7	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	42

Alternative mark scheme for previous 2 marks								
Recognising the symmetry of the velocity distribution due to the correspondence of the points $(0,0) \rightarrow (50,0)$ and $(5,2.5) \rightarrow (45,2.5)$	(M1)							
Complete the idea of symmetry with one further property and hence State $s_3 = s_1 = 8.33$	(A1)		Property is any one of a(0) = -a(50) a(5) = a(45) v(2.5) = v(47.5) oe					
Distance from O to A is 117m	A1							
Average speed is 2.33 ms^{-1}	B1ft	6	ft answer for total distance					

6 (i)		M1		For applying Newton's 2 nd law to A or B
	T - 0.4g = 0.4a or $1.6g - T = 1.6a$	A1		
	1.6g - T = 1.6a or $T - 0.4g = 0.4aor 1.6g - 0.4g = (1.6 + 0.4)a$	B1		
	T = 6.4	A1		
	Work done by tension is 7.68 J	B1ft	5	
Alternative n	nark scheme for 6 (i)			
		M1		For applying Newton's 2 nd law to A or B
	T - 0.4g = 0.4a or $1.6g - T = 1.6a$	A1		
	1.6g - T = 1.6a or $T - 0.4g = 0.4aor 1.6g - 0.4g = (1.6 + 0.4)a$	B1		
	WD by T = initial PE – final KE = $1.6 \times g \times 1.2 - \frac{1}{2} \times 1.6 \times 14.4$	M1		For finding v^2 and applying Work/Energy equation to B
	WD by $T = 19.2 - 11.52 = 7.68$	A1	5	

		9709	<u>9709_w13_ms_4</u> 2				
Page 8	3	Mark Scheme	Syllabus	Paper			
		GCE AS/A LEVEL – October/No	ovember	2013	9709	42	
6 (ii)	[1.6	$\times 10 \times 1.2 = \frac{1}{2} 1.6 v^2 + 7.68$]	M1		For using PE loss = KE gain + W to find v^2	- D by T	
	$v^2 =$	14.4	A1				
	14.4 h = H =	$h = 2 \times 10 \times h$ 0.72 $2 \times 1.2 + h$	M1		For using PCE for A's motion after B reaches the ground or $0 = u^2 - 2gh$ and $H = 2 \times 1.2 + h$		
	Grea	atest height is 3.12 m	A1	4			
First Alterna	ative N	Aarking Scheme for 6 (ii)	·				
	[v ² =	$= 2 \times 6 \times 1.2$]	M1		For using $v^2 = 2ast$	to find v^2	
	$v^2 =$	14.4	A1				
	14.4 h = H =	$h = 2 \times 10 \times h$ 0.72 $2 \times 1.2 + h$	M1		For using PCE for A's motion at B reaches the ground or $0 = u^2 - 2gh$ and $H = 2 \times 1.2 + h$		
	Grea	atest height is 3.12 m	A1	4			
Second Alter	rnativ	e Marking Scheme for 6 (ii)		1			
	WD 7.68	by T = Increase in PE = $0.4 \times g \times s$	M1		For applying WD b A's complete motio	by T to particle	
	$\mathbf{s} = \mathbf{s}$	1.92	A1				
	H =	1.2 + s	M1		For adding 1.2 to s		
	H =	1.2 + 1.92 = 3.12 Height = 3.12 m	A1	4			

						9709	0 w13 ms 42
	Page 9		Mark Scheme			Syllabus	Paper
			GCE AS/A LEVEL – October/No	vember 2	2013	9709	42
		r			1	Γ	
7	(i)	[s =	$\frac{1}{2} 5 \times 0.4 + 19 \times 0.4 + \frac{1}{2} 4 \times 0.4$]	M1		For using the area p distance	property for
		Dist	ance $= 9.4$	A1	2		
	(ii)	Acc	eleration is 0.08 ms ⁻²	B1			
		Dec	eleration is 0.1ms^{-2}	B1	2		
	(iii)	[T –	(800 + 100) g = (800 + 100)a]	M1		For applying Newton's 2 nd law to the <u>elevator and box</u>	
		T – 5	900g = 900a	A1			
		T = T = T =	9072 N in 1 st stage 9000 N in 2 nd stage 8910 N in 3 rd stage	A1	3		
	(iv)	[R –	100g = 100a]	M1		For applying Newto the <u>box</u>	on's 2 nd law to
		R =	1008 N	A1		For obtaining the gradient the force on the box	reatest value of
		R =	990 N	A1	3	For obtaining the le force on the box	east value of the