Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	$\mathbf{4 2}$

1	Applying $\mathrm{T} \cos \beta=\mathrm{W} \sin \alpha$ Tension is 2.5 N	M1 A1 A1	3	For resolving forces parallel to the line of greatest slope $\mathrm{T}(24 / 25)=5.1(8 / 17)$ or $\mathrm{T} \cos 16.26=5.1 \sin 28.07$
First Alternative Marking Scheme				
	Applying $\mathrm{R} \cos \alpha+\mathrm{T} \sin (\alpha+\beta)=\mathrm{W}$ and $\mathrm{R} \sin \alpha=\mathrm{T} \cos (\alpha+\beta)$ Tension is 2.5 N	M1 A1 A1	3	For resolving forces vertically or horizontally $\mathrm{R} \cos 28.07+\mathrm{T} \sin 44.33=5.1$ and $\mathrm{R} \sin 28.07=\mathrm{T} \cos 44.33$
Second Alternative Marking Scheme				
	Applying $\mathrm{T} / \sin \alpha=5.1 / \sin (90+\beta)$ Tension is 2.5 N	M1 A1 A1	3	Using Triangle of forces $\mathrm{T} / \sin 28.07=5.1 / \sin 106.26$

$\mathbf{2}$		M1		For using $\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{v}^{2}$ or WD $=\mathrm{Fd} \cos \alpha$
Gain in $\mathrm{KE}=1 / 225 \times 3^{2}$ or WD by pulling force $=220 \times 15 \cos \alpha$ WD by pulling force $=220 \times 15 \cos \alpha$ or Gain in $\mathrm{KE}=1 / 225 \times 3^{2}$	A1	B1	M1	A1
$[3300 \cos \alpha=112.5+3000]$				
$\alpha=19.4$	5	For using WD by pulling force $=$ KE gain + WD against resistance		

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2013	9709	$\mathbf{4 2}$

3 (i)		M1		For using $\mathrm{F}=\mathrm{P} / \mathrm{v}$ and Newton's $2^{\text {nd }}$ law with $\mathrm{a}=0$		
$100 / 4-4 \mathrm{k}=0 \rightarrow \mathrm{k}=6.25$					$\quad 2$	AG
:---						

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

Alternative Marking Scheme

5 (i)	$\left[s=t^{2} / 2-0.1 t^{3} / 3\right]$ $\left[\mathrm{s}_{1}=25 / 2-0.1 \times 125 / 3\right]$ $\mathrm{s}_{1}=8.33$	M1* DM1* A1	3	For integrating to find s for $0 \leqslant t \leqslant 5$ For obtaining s_{1} by using limits 0 to 5 or having zero for constant of integration (can be implied) and substituting $\mathrm{t}=5$
(ii)	$\begin{aligned} & \mathrm{s}_{2}=2.5 \times 40 \\ & {\left[\mathrm{~s}=9 \mathrm{t}^{2} / 2-0.1 \mathrm{t}^{3} / 3-200 \mathrm{t}\right.} \\ & \\ & \\ & \text { for } 45 \leqslant \mathrm{t} \leqslant 50] \\ & \mathrm{s}_{3}=\left[9(50)^{2} / 2-0.1(50)^{3} / 3-200(50)\right] \\ & \quad-\left[9(45)^{2} / 2-0.1(45)^{3} / 3-200(45)\right] \\ & {[=8.33]} \end{aligned}$	A1 M1 A1	M 1	For using $\mathrm{s}=\mathrm{v}(5) \times(45-5)$ for $5 \leqslant t \leqslant 45$ For integrating to find s for $45 \leqslant \mathrm{t}$ $\leqslant 50$ and implying the use of limits 45 and 50 or equivalent via constant of integration For applying the limits at 45 and 50 correctly or equivalent via constant of integration

Page 7 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2013	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

Alternative mark scheme for previous 2 marks

6 (i)	$\begin{aligned} & \mathrm{T}-0.4 \mathrm{~g}=0.4 \mathrm{a} \text { or } 1.6 \mathrm{~g}-\mathrm{T}=1.6 \mathrm{a} \\ & 1.6 \mathrm{~g}-\mathrm{T}=1.6 \mathrm{a} \text { or } \mathrm{T}-0.4 \mathrm{~g}=0.4 \mathrm{a} \\ & \text { or } \quad 1.6 \mathrm{~g}-0.4 \mathrm{~g}=(1.6+0.4) \mathrm{a} \\ & \mathrm{~T}=6.4 \end{aligned}$ Work done by tension is 7.68 J	M1 A1 B1 A1 B1ft	5	For applying Newton's $2^{\text {nd }}$ law to A or B
Alternative mark scheme for 6 (i)				
	$\begin{aligned} & \mathrm{T}-0.4 \mathrm{~g}=0.4 \mathrm{a} \text { or } 1.6 \mathrm{~g}-\mathrm{T}=1.6 \mathrm{a} \\ & 1.6 \mathrm{~g}-\mathrm{T} \end{aligned}=1.6 \mathrm{a} \text { or } \mathrm{T}-0.4 \mathrm{~g}=0.4 \mathrm{a}, ~ \begin{aligned} \text { or } \quad 1.6 \mathrm{~g}-0.4 \mathrm{~g}=(1.6+0.4) \mathrm{a} \end{aligned} \quad \begin{aligned} \text { WD by } \mathrm{T} & =\text { initial PE }- \text { final KE } \\ & =1.6 \times \mathrm{g} \times 1.2-1 / 2 \times 1.6 \times 14.4 \end{aligned}$ WD by $\mathrm{T}=19.2-11.52=7.68$	M1 A1 B1 M1 A1	5	For applying Newton's $2^{\text {nd }}$ law to A or B For finding v^{2} and applying Work/Energy equation to B

Page 8	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	$\mathbf{4 2}$

(ii)	$\left[1.6 \times 10 \times 1.2=1 / 21.6 \mathrm{v}^{2}+7.68\right]$ $\mathrm{v}^{2}=14.4$ $14.4=2 \times 10 \times \mathrm{h}$ $\mathrm{h}=0.72$ $\mathrm{H}=2 \times 1.2+\mathrm{h}$	M1		For using PE loss $=$ KE gain +WD by T to find v^{2}			
Greatest height is 3.12 m					\quad	M1	A1
:---	:---						

First Alternative Marking Scheme for 6 (ii)

$\begin{aligned} & {\left[\mathrm{v}^{2}=2 \times 6 \times 1.2\right]} \\ & \mathrm{v}^{2}=14.4 \\ & 14.4=2 \times 10 \times \mathrm{h} \\ & \mathrm{~h}=0.72 \\ & \mathrm{H}=2 \times 1.2+\mathrm{h} \end{aligned}$ Greatest height is 3.12 m	M1 A1 M1 A1	4	For using $\mathrm{v}^{2}=2$ as to find v^{2} For using PCE for A's motion after B reaches the ground or $0=u^{2}-2 g h$ $\text { and } \mathrm{H}=2 \times 1.2+\mathrm{h}$
Second Alternative Marking Scheme for 6 (ii)			
$\begin{aligned} & \text { WD by } \mathrm{T}=\text { Increase in PE } \\ & 7.68=0.4 \times \mathrm{g} \times \mathrm{s} \\ & \mathrm{~s}=1.92 \\ & \mathrm{H}=1.2+\mathrm{s} \\ & \mathrm{H}=1.2+1.92=3.12 \text { Height }=3.12 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	For applying WD by T to particle A's complete motion For adding 1.2 to s

Page 9	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

$7 \quad$ (i)	$[s=1 / 25 \times 0.4+19 \times 0.4+1 / 24 \times 0.4]$ Distance $=9.4$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For using the area property for distance
(ii)	Acceleration is $0.08 \mathrm{~ms}^{-2}$ Deceleration is $0.1 \mathrm{~ms}^{-2}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
(iii)	$\begin{aligned} & {[\mathrm{T}-(800+100) \mathrm{g}=(800+100) \mathrm{a}]} \\ & \mathrm{T}-900 \mathrm{~g}=900 \mathrm{a} \\ & \mathrm{~T}=9072 \mathrm{~N} \text { in } 1^{\text {st }} \text { tage } \\ & \mathrm{T}=9000 \mathrm{~N} \text { in } 2^{\text {nd }} \text { stage } \\ & \mathrm{T}=8910 \mathrm{~N} \text { in } 3^{\text {rd }} \text { stage } \end{aligned}$	M1 A1 A1	3	For applying Newton's $2^{\text {nd }}$ law to the elevator and box
(iv)	$\begin{aligned} & {[\mathrm{R}-100 \mathrm{~g}=100 \mathrm{a}]} \\ & \mathrm{R}=1008 \mathrm{~N} \\ & \mathrm{R}=990 \mathrm{~N} \end{aligned}$	M1 A1 A1	3	For applying Newton's $2^{\text {nd }}$ law to the box For obtaining the greatest value of the force on the box For obtaining the least value of the force on the box

