Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	$\mathbf{9 7 0 9}$	$\mathbf{4 1}$

1	$[\mathrm{T} \cos \alpha=\mathrm{mg}]$ Tension is 3.4 N $\begin{aligned} & {[\mathrm{F}=\mathrm{T} \sin \alpha]} \\ & \mathrm{F}=1.6 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	For resolving forces vertically For resolving forces horizontally
2	(i) $\begin{aligned} {[\mathrm{WD}=30} & \times 20 \times 0.6 \\ & +40 \times 20 \times 0.8] \end{aligned}$ Work done is 1000 J	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$	2	For using WD = Fdcos θ
	(ii) $30 \times 0.6+40 \times 0.8-0.625 \mathrm{~W}=0$ Weight is 80 N	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	For applying $\mathrm{F}=\mu \mathrm{W}$ and Newton's $2^{\text {nd }}$ law with $\mathrm{a}=0$
3	(i) $\begin{aligned} & \mathrm{F}-780 \times(36 \div 325)-32 \\ & \\ & =78 \times(-0.2) \\ & \mathrm{F}=103 \quad(102.8 \text { exact }) \end{aligned}$	M1 A2 A1	4	For applying Newton's $2^{\text {nd }}$ law to the bicycle/cyclist (A2 for all correct, A 1 for one error, A 0 for more than one error)
	(ii) $\left[0=7^{2}+2(-0.2) \mathrm{s}\right]$ Distance is 122.5 m (accept 122 or 123)	M1 A1	2	For using $0=\mathrm{u}^{2}+2$ as
4	(i) $[-\mu \mathrm{mg}=\mathrm{ma}]$ Decelerations of P and Q are $2 \mathrm{~ms}^{-2}$ and $2.5 \mathrm{~ms}^{-2}$.	M1 A1	2	For using Newton's $2^{\text {nd }}$ law, $\mathrm{F}=\mu \mathrm{R}$ and $\mathrm{R}=\mathrm{mg}$
	(ii) $\begin{aligned} & 8 t-t^{2}=3 t-1.25 t^{2}+5 \\ & t=\sqrt{ } 120-10 \quad(=0.95445 \ldots) \end{aligned}$ Speed of $\mathrm{P}=6.09 \mathrm{~ms}^{-1}$, speed of $\mathrm{Q}=0.614 \mathrm{~ms}^{-1}$	M1 A1 A1 M1 A1	5	For using $s=u t+1 / 2 t^{2}$ and $\mathrm{s}_{\mathrm{P}}=\mathrm{s}_{\mathrm{Q}}+5$ For using $\mathrm{v}=\mathrm{u}+$ at for both P and Q

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2013	9709	$\mathbf{4 1}$

5	(i) Gain in PE $=15000 \mathrm{~g} \times 16$ WD against resistance $=$ 1800×1440 Work done is $4.99 \times 10^{6} \mathrm{~J}$	B1 B1 M1 A1	4	For using:- WD by driving force $=$ Gain in PE + WD against resistance
	(ii) $\begin{aligned} & 5030000= \\ & 1 / 215000\left(24^{2}-15^{2}\right)+1600 \mathrm{~d} \end{aligned}$ Distance is 1500 m	M1 A1 A1	3	For using :- WD by engine = Increase in KE + WD against resistance
6	(i) $\begin{aligned} & \mathrm{T}-0.3 \mathrm{~g}=0.3 \mathrm{a} \text { or } \\ & 0.7 \mathrm{~g}-\mathrm{T}=0.7 \mathrm{a} \\ & 0.7 \mathrm{~g}-\mathrm{T}=0.7 \mathrm{a} \text { or } \\ & \mathrm{T}-0.3 \mathrm{~g}=0.3 \mathrm{a} \text { or } \\ & \quad 0.7 \mathrm{~g}-0.3 \mathrm{~g}=(0.7+0.3) \mathrm{a} \end{aligned}$ Tension is 4.2 N	M1 A1 B1 A1	4	For applying Newton's $2^{\text {nd }}$ law to A or to B
	(ii) $\mathrm{a}=4$ $\begin{align*} & S_{\text {taut }}=1.6^{2} /(2 \times 4) \quad(=0 \\ & {\left[(0.52+0.32)=-1.6 t+5 t^{2}\right]} \end{align*}$ $[(t-0.6)(5 t+1.4)=0]$ Time taken is 0.6 s	B1 B1 M1 M1 A1	5	May be scored in (i) For using $s=u t+1 / 2 g t^{2}$ For solving the resultant quadratic equation.
Alternative Marking Scheme for the last three marks				
	$\begin{aligned} & 0^{2}=1.6^{2}-2 \mathrm{gs}_{\text {up }}, \\ & \mathrm{t}_{\text {up }}=2 \mathrm{~s}_{\text {up }} /(1.6+0) \quad(=0.16) \\ & 0.52+\mathrm{s}_{\text {taut }}+\mathrm{s}_{\text {up }}=0+1 / 2 \mathrm{gt}_{\text {down }}{ }^{2} \\ & \quad\left(\mathrm{t}_{\text {down }}=0.44\right) \end{aligned} \quad \begin{aligned} & \text { Time taken }=\mathrm{t}_{\text {up }}+\mathrm{t}_{\text {down }}=0.6 \mathrm{~s} \end{aligned}$	M1 M1 B1		For using kinematic formulae to find t_{up} For using kinematic formulae to find $\mathrm{t}_{\text {down }}$

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	$\mathbf{9 7 0 9}$	$\mathbf{4 1}$

7	(i) $\mathrm{v}(\mathrm{t})=0.3 \mathrm{t}^{2}$ $\mathrm{s}(\mathrm{t})=0.1 \mathrm{t}^{3}$ Velocity is $30 \mathrm{~ms}^{-1}$ and displacement is 100 m	M1 A1 M1 A1 A1	5	For integrating 0.6 t and using $\mathrm{v}(0)=0$ (may be implied by absence of constant of integration) For integrating $v(t)$ and using $s(0)=0$ (may be implied by absence of constant of integration)
	(ii) $v(t)=-0.2 t^{2}+50$ At A, $-0.2 \mathrm{t}^{2}+50=0 \rightarrow \mathrm{t}=\sqrt{ } 250$ $s(t)=-t^{3} / 15+50 t-1000 / 3$ Distance OA is 194 m	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	7	For integrating -0.4 t and using $\mathrm{v}(10)=30$ For integrating $\mathrm{v}(\mathrm{t})$ and using $\mathrm{s}(10)=100$ For finding $\mathrm{s}(\sqrt{ } 250)$

