Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9709	33

1 Apply at least one logarithm property correctly
Obtain $\frac{(x+4)^{2}}{x}=x+a$ or equivalent without logarithm involved
Rearrange to express x in terms of a
Obtain $\frac{16}{a-8}$ or equivalent

2 Carry out complete substitution including the use of $\frac{\mathrm{d} u}{\mathrm{~d} x}=3$
Obtain $\int\left(\frac{1}{3}-\frac{1}{3 u}\right) \mathrm{d} u$
Integrate to obtain form $k_{1} u+k_{2} \ln u$ or $k_{1} u+k_{2} \ln 3 u$ where $k_{1} k_{2} \neq 0$ M1
Obtain $\frac{1}{3}(3 x+1)-\frac{1}{3} \ln (3 x+1)$ or equivalent, condoning absence of modulus signs and $+c$ A1

3 (i) Substitute -2 and equate to zero or divide by $x+2$ and equate remainder to zero or use -2 in synthetic division
Obtain $a=-1$ A1
(ii) Attempt to find quadratic factor by division reaching $x^{2}+k x$, or inspection as far as
$(x+2)\left(x^{2}+B x+c\right)$ and equations for one or both of B and C, or $(x+2)\left(A x^{2}+B x+7\right)$ and equations for one or both of A and B.
Obtain $x^{2}-3 x+7$
Use discriminant to obtain -19 , or equivalent, and confirm one root
cwo
A1

4 Differentiate y^{3} to obtain $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Use correct product rule at least once
Obtain $6 \mathrm{e}^{2 x} y+3 \mathrm{e}^{2 x} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\mathrm{e}^{x} y^{3}+3 \mathrm{e}^{x} y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of LHS
Equate derivative of LHS to zero, substitute $x=0$ and $y=2$ and find value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Obtain $-\frac{4}{3}$ or equivalent as final answer

5 (i) Use integration by parts to obtain $a x \mathrm{e}^{-\frac{1}{2} x}+\int b \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x$
Obtain $-8 x \mathrm{e}^{-\frac{1}{2} x}+\int 8 \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x$ or unsimplified equivalent
Obtain $-8 x \mathrm{e}^{-\frac{1}{2} x}-16 \mathrm{e}^{-\frac{1}{2} x}$
Use limits correctly and equate to 9 $\mathrm{M} 1\left(\mathrm{~d}^{*} \mathrm{M}\right)$
Obtain given answer $p=2 \ln \left(\frac{8 p+16}{7}\right)$ correctly

Page 5 Mark Scheme	Syllabus	Paper	
	GCE A LEVEL - October/November 2013	9709	33

(ii) Use correct iteration formula correctly at least once

Obtain final answer 3.77
Show sufficient iterations to 5 sf or better to justify accuracy 3.77 or show sign change in interval (3.765, 3.775)

$$
[3.5 \rightarrow 3.6766 \rightarrow 3.7398 \rightarrow 3.7619 \rightarrow 3.7696 \rightarrow 3.7723]
$$

6 (i) Find scalar product of the normals to the planes
Using the correct process for the moduli, divide the scalar product by the product of the moduli and find $\cos ^{-1}$ of the result.
Obtain 67.8° (or 1.18 radians)
(ii) EITHER Carry out complete method for finding point on line

Obtain one such point, e.g. $(2,-3,0)$ or $\left(\frac{17}{7}, 0, \frac{6}{7}\right)$ or $(0,-17,-4)$ or \ldots A1...

Either State $3 a-b+2 c=0$ and $a+b-4 c=0$ or equivalent
B1
Attempt to solve for one ratio, e.g. $a: b \quad$ M1
Obtain $a: b: c=1: 7: 2$ or equivalent A1
State a correct final answer, e.g. $r=[2,-3,0]+\lambda[1,7,2] \quad$ A1 \downarrow^{\wedge}
Or 1 Obtain a second point on the line
A1
Subtract position vectors to obtain direction vector M1
Obtain [1, 7, 2] or equivalent A1
State a correct final answer, e.g. $r=[2,-3,0]+\lambda[1,7,2] \quad$ A1 \aleph^{\wedge}

Or 2 Use correct method to calculate vector product of two normals M1
Obtain two correct components A1
Obtain [2, 14, 4] or equivalent A1
State a correct final answer, e.g. $r=[2,-3,0]+\lambda[1,7,2] \quad$ A1 ${ }^{\wedge}$
[\checkmark is dependent on both M marks in all three cases]
OR 3 Express one variable in terms of a second variable

Obtain a correct simplified expression, e.g. $x=\frac{1}{2}(4+z)$
Express the first variable in terms of third variable
Obtain a correct simplified expression, e.g. $x=\frac{1}{7}(17+y)$
Form a vector equation for the line
State a correct final answer, e.g. $r=[0,-17,-4]+\lambda[1,7,2]$
OR 4 Express one variable in terms of a second variable
Obtain a correct simplified expression, e.g. $z=2 x-4 \quad$ A1
Express third variable in terms of the second variable M1
Obtain a correct simplified expression, e.g. $y=7 x-17 \quad$ A1
Form a vector equation for the line M1
State a correct final answer, e.g. $r=[0,-17,-4]+\lambda[1,7,2]$

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9709	33

7 (i) Use $\sec \theta=\frac{1}{\cos \theta}$ and $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$
Use $\sin 2 \theta=2 \sin \theta \cos \theta$ and to form a horizontal equation in $\sin \theta$ and $\cos \theta$ or fractions with common denominators
Obtain given equation $2 \sin \theta+4 \cos \theta=3$ correctly
(ii) State or imply $R=\sqrt{20}$ or 4.47 or equivalent

Use correct trigonometry to find $\alpha \quad$ M1
Obtain 63.43 or 63.44 with no errors seen A1
(iii) Carry out a correct method to find one value in given range

Carry out a correct method to find second value in given range M1
Obtain 338.7° (or 74.4°) and no others between 0° and 360°

8 (i) Either State or imply form $\frac{A}{1+x}+\frac{B}{(1+x)^{2}}+\frac{C}{2-3 x}$
Use any relevant method to find at least one constant M1
Obtain $A=-1 \quad$ A1
Obtain $B=3 \quad$ A1
Obtain $C=4 \quad$ A1
Or State or imply form $\frac{A}{1+x}+\frac{B x}{(1+x)^{2}}+\frac{C}{2-3 x}$
Use any relevant method to find at least one constant
Obtain $A=2$
Obtain $B=-3$
Obtain $C=4$
Or State or imply form $\frac{D x+E}{(1+x)^{2}}+\frac{F}{2-3 x}$
Use any relevant method to find at least one constant M1
Obtain $D=-1 \quad$ A1
Obtain $E=2$
Obtain $F=4$ A1
(ii) Either Use correct method to find first two terms of expansion of $(1+x)^{-1}$ or

$$
(1+x)^{-2} \text { or }(2-3 x)^{-1} \text { or }\left(1-\frac{3}{2} x\right)^{-1}
$$

Obtain correct unsimplified expansion of first partial fraction up to x^{2} term Obtain correct unsimplified expansion of second partial fraction up to x^{2} term Obtain correct unsimplified expansion of third partial fraction up to x^{2} term Obtain final answer $4-2 x+\frac{25}{2} x^{2}$
Use correct method to find first two terms of expansion of $(1+x)^{-2}$
or $(2-3 x)^{-1}$ or $\left(1-\frac{3}{2} x\right)^{-1}$
Obtain correct unsimplified expansion of first partial fraction up to x^{2} term A1 \downarrow
Obtain correct unsimplified expansion of second partial fraction up to x^{2} term A1 $\sqrt{\wedge}$
Expand and obtain sufficient terms to obtain three terms
Obtain final answer $4-2 x+\frac{25}{2} x^{2}$
Or 2 (expanding original expression)
Use correct method to find first two terms of expansion of $(1+x)^{-2}$
or $(2-3 x)^{-1}$ or $\left(1-\frac{3}{2} x\right)^{-1}$
Obtain correct expansion $1-2 x+3 x^{2}$ or unsimplified equivalent
Obtain correct expansion $\frac{1}{2}\left(1+\frac{3}{2} x+\frac{9}{4} x^{2}\right)$ or unsimplified equivalent
Expand and obtain sufficient terms to obtain three terms
Obtain final answer $4-2 x+\frac{25}{2} x^{2}$
Or 3 (McLaurin expansion)
Obtain first derivative $f^{\prime}(x)=(1+x)^{-2}-6(1+x)^{-3}+12(2-3 x)^{-2}$
Obtain $f^{\prime}(0)=1-6+3$ or equivalent A1
Obtain $f^{\prime \prime}(0)=-2+18+9$ or equivalent A1
Use correct form for McLaurin expansion M1
Obtain final answer $4-2 x+\frac{25}{2} x^{2}$ A1

9 (a) Solve using formula, including simplification under square root sign
Obtain $\frac{-2 \pm 4 \mathrm{i}}{2(2-\mathrm{i})}$ or similarly simplified equivalents A1

Multiply by $\frac{2+\mathrm{i}}{2+\mathrm{i}}$ or equivalent in at least one case $\mathrm{M} 1\left(\mathrm{~d}^{*} \mathrm{M}\right)$

Obtain final answer $-\frac{4}{5}+\frac{3}{5} \mathrm{i}$
Obtain final answer -i

Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9709	33

(b) Show w in first quadrant with modulus and argument relatively correct B1

Show w^{3} in second quadrant with modulus and argument relatively correct B1
Show w^{*} in fourth quadrant with modulus and argument relatively correct B1
Use correct method for area of triangle M1
Obtain 10 by calculation A1

10 Use $2 \cos ^{2} x=1+\cos 2 x$ or equivalent B1
Separate variables and integrate at least one side M1
Obtain $\ln \left(y^{3}+1\right)=\ldots$ or equivalent A1
Obtain $\ldots=2 x+\sin 2 x$ or equivalent A1
Use $x=0, y=2$ to find constant of integration (or as limits) in an expression containing
at least two terms of the form $a \ln \left(y^{3}+1\right), b x$ or $c \sin 2 x \quad \mathrm{M}$ * *
Obtain $\ln \left(y^{3}+1\right)=2 x+\sin 2 x+\ln 9$ or equivalent e.g. implied by correct constant A1
Identify at least one of $\frac{1}{2} \pi$ and $\frac{3}{2} \pi$ as x-coordinate at stationary point B1
Use correct process to find y-coordinate for at least one x-coordinate
Obtain 5.9
Obtain 48.1

