			9709	<u>w13</u> n	<u>15_33</u>
<u> </u>	Page 4	Mark Scheme	Syllabus	Pape	r
L		GCE A LEVEL - October/November 2013	3103	33	
1	Apply at least	one logarithm property correctly		*M1	
	Obtain $\frac{(x+4)}{x}$	$\int \frac{a}{a} = x + a$ or equivalent without logarithm involved		A1	
	Rearrange to	express x in terms of a		M1	d*M
	Obtain $\frac{16}{a-8}$	or equivalent		A1	[4]
2	Carry out con	The plete substitution including the use of $\frac{du}{dx} = 3$		M1	
	Obtain $\int \left(\frac{1}{3}\right)^{-1}$	$\left(\frac{1}{3u}\right) du$		A1	
	Integrate to ol	btain form $k_1u + k_2 \ln u$ or $k_1u + k_2 \ln 3u$ where $k_1k_2 \neq 0$		M1	
	Obtain $\frac{1}{3}(3x -$	$(+1) - \frac{1}{3}\ln(3x+1)$ or equivalent, condoning absence of modulu	s signs and $+c$	A1	[4]
3	(i) Substitut -2 in syn Obtain a	e –2 and equate to zero or divide by $x + 2$ and equate remainder thetic division = -1	er to zero or use	M1 A1	[2]
	(ii) Attempt $(x+2)(x)$ and equa Obtain x Use discr	to find quadratic factor by division reaching $x^2 + kx$, or inspece $x^2 + Bx + c$ and equations for one or both of <i>B</i> and <i>C</i> , or $(x + 2x)^2 - 3x + 7$ finiminant to obtain -19, or equivalent, and confirm one root	tion as far as 2) $(Ax^2 + Bx + 7)$ cwo	M1 A1 A1	[3]
4	Differentiate	y^3 to obtain $3y^2 \frac{dy}{dy}$		B1	
	Use correct pi	oduct rule at least once		*M1	
	Obtain $6e^{2x}y$	+ $3e^{2x}\frac{dy}{dx} + e^{x}y^{3} + 3e^{x}y^{2}\frac{dy}{dx}$ as derivative of LHS		A1	
	Equate derivative of LHS to zero, substitute $x = 0$ and $y = 2$ and find value of $\frac{dy}{dx}$				
	Obtain $-\frac{4}{3}$ o	r equivalent as final answer		A1	[5]
5	(i) Use integ	gration by parts to obtain $axe^{-\frac{1}{2}x} + \int be^{-\frac{1}{2}x} dx$		M1*	
	Obtain –	$8xe^{-\frac{1}{2}x} + \int 8e^{-\frac{1}{2}x} dx$ or unsimplified equivalent		A1	
	Obtain – Use limit	$8xe^{-\frac{1}{2}x} - 16e^{-\frac{1}{2}x}$ is correctly and equate to 9		A1 M1((d*M)
	Obtain o	iven answer $p = 2 \ln \left(\frac{8p+16}{2} \right)$ correctly		Δ1	[5]
	ootuin g	7) concerty		- 1 1	[2]

		9709 wi				<u>w13</u> m	<u>s 3</u> 3
	Pa	ige 5		Mark Scheme	Syllabus	Pape	r _
			G	CE A LEVEL – October/November 2013	9709	33	
	(ii)	Use corre Obtain fir Show suf	ct iterati nal answ ficient it	on formula correctly at least once er 3.77 erations to 5sf or better to justify accuracy 3.77 or s	show sign change in	M1 A1	503
		interval (: $[3.5 \rightarrow$	3.765, 3. 3.6766	(75) $\rightarrow 3.7398 \rightarrow 3.7619 \rightarrow 3.7696 \rightarrow 3.7723$]		AI	[3]
6	(i)	Find scala Using the	ar produc correct	et of the normals to the planes process for the moduli, divide the scalar product by	the product of the	M1	
		moduli ar	nd find c	os^{-1} of the result.	_	M1	
		Obtain 67	'.8° (or 1	.18 radians)		A1	[3]
	(ii)	<u>EITHER</u>	Carry	out complete method for finding point on line		M1	
			Obtain	one such point, e.g. $(2,-3,0)$ or $(\frac{17}{7},0,\frac{6}{7})$ or $(0,-1)$	-17,-4) or	A1	
			Fither	State $3a - b + 2c = 0$ and $a + b - 4c = 0$ or equiv	alent	B 1	
			<u>Entiter</u>	Attempt to solve for one ratio $e g a \cdot h$		M1	
				Obtain $a:b:c=1:7:2$ or equivalent		A1	
				State a correct final answer, e.g. $r = [2, -3, 0] + \lambda$	[1, 7, 2]	A1√ [^]	
			<u>Or 1</u>	Obtain a second point on the line		A1	
				Subtract position vectors to obtain direction vector	r	M1	
				Obtain [1, 7, 2] or equivalent		A1	
				State a correct final answer, e.g. $r = [2, -3, 0] + \lambda$.[1, 7, 2]	A1√	
			<u>Or 2</u>	Use correct method to calculate vector product of	two normals	M1	
				Obtain two correct components		A1	
				Obtain [2, 14, 4] or equivalent		A1	
				State a correct final answer, e.g. $r = [2, -3, 0] + \lambda$.[1, 7, 2]	A1√	
				[♥ is dependent on both M marks in all three case	s		
		<u>OR 3</u>	Expres	s one variable in terms of a second variable		M1	
			Obtain	a correct simplified expression, e.g. $x = \frac{1}{2}(4+z)$		A1	
			Expres	s the first variable in terms of third variable		M1	
			Obtain	a correct simplified expression, e.g. $x = \frac{1}{7} (17 + y)$)	A1	
			Form a	a vector equation for the line		M1	
			State a	correct final answer, e.g. $r = [0, -17, -4] + \lambda [1, 7, -4]$, 2]	A1	
		<u>OR 4</u>	Expres	s one variable in terms of a second variable		M1	
			Obtain	a correct simplified expression, e.g. $z = 2x - 4$		A1	
			Expres	s third variable in terms of the second variable		M1	
			Obtain	a correct simplified expression, e.g. $y = /x - 1/$		Al	
			Form a	i vector equation for the line	21	M1	[7]
			State a	correct final answer, e.g. $r = [0, -1/, -4] + \lambda [1, 7]$,∠]	Al	[6]

_				9709	<u>9 w1</u> 3 m	<mark>s</mark> 3
Page 6		ge 6	Mark Scheme	Syllabus	Paper	• _
			GCE A LEVEL – October/November 2013	9709	33	
7	(i)	Use sec 6	$\theta = \frac{1}{\cos \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$		B1	
		Use sin 2	$\theta = 2\sin\theta\cos\theta$ and to form a horizontal equation in $\sin\theta$	and $\cos\theta$ or	271	
		fractions	with common denominators $2 = 2 = 2$		MI A 1	[2]
		Obtain gi	$\frac{1}{2}\sin\theta + 4\cos\theta = 3$ confectly		AI	[3]
	(ii)	State or in	mply $R = \sqrt{20}$ or 4.47 or equivalent		B1	
		Use corre	ect trigonometry to find α		M1	
		Obtain 63	3.43 or 63.44 with no errors seen		A1	[3]
	(iii)	Carry out	a correct method to find one value in given range		M1	
	()	Obtain 74	4.4° (or 338.7°)		A1	
		Carry out	a correct method to find second value in given range		M1	
		Obtain 33	38.7° (or 74.4°) and no others between 0° and 360°		A1	[4]
8	(i)	Either	State or imply form $\frac{A}{1+x} + \frac{B}{(1+x)^2} + \frac{C}{2-3x}$ Use any relevant method to find at least one constant Obtain $A = -1$		B1 M1 A1	
			Obtain $B = 3$ Obtain $C = 4$		Al Al	
		<u>Or</u>	State or imply form $\frac{A}{1+x} + \frac{Bx}{(1+x)^2} + \frac{C}{2-3x}$		B1	
			Use any relevant method to find at least one constant Obtain $A = 2$ Obtain $B = -3$ Obtain $C = 4$		M1 A1 A1 A1	
		<u>Or</u>	State or imply form $\frac{Dx+E}{(1+x)^2} + \frac{F}{2-3x}$		B1	
			Use any relevant method to find at least one constant		M1	
			Obtain $D = -1$		A1	
			Obtain $E = 2$		A1	
			Obtain $F = 4$		A1	[5]

			9709_w				
	Pa	ge 7	Mark Scheme	Syllabus	Paper	r	
			GCE A LEVEL – October/November 2013	9709	33		
	(ii)	<u>Either</u>	Use correct method to find first two terms of expansion of	$(1+x)^{-1}$ or			
			$(1+x)^{-2}$ or $(2-3x)^{-1}$ or $\left(1-\frac{3}{2}x\right)^{-1}$		M1		
			Obtain correct unsimplified expansion of first partial fract	ion up to x^2 term	A1√ [*]		
			Obtain correct unsimplified expansion of second partial fr	action up to x^2 term	A1√		
			Obtain correct unsimplified expansion of third partial frac	tion up to x^2 term	Al√		
			Obtain final answer $4 - 2x + \frac{23}{2}x^2$		A1		
		<u>Or 1</u>	Use correct method to find first two terms of expansion of $(1 + 1)^{-1}$	$\int (1+x)^{-2}$			
			or $(2-3x)^{-1}$ or $(1-\frac{3}{2}x)^{-1}$		M1		
			Obtain correct unsimplified expansion of first partial fract	ion up to x^2 term	A1√		
			Obtain correct unsimplified expansion of second partial fr Expand and obtain sufficient terms to obtain three terms	action up to x^2 term	Al√ M1		
			Obtain final answer $4 - 2x + \frac{25}{2}x^2$		A1		
		<u>Or 2</u>	(expanding original expression)				
			Use correct method to find first two terms of expansion of	$(1+x)^{-2}$			
			or $(2-3x)^{-1}$ or $(1-\frac{3}{2}x)^{-1}$		M1		
			Obtain correct expansion $1 - 2x + 3x^2$ or unsimplified equ	ivalent	A1		
			Obtain correct expansion $\frac{1}{2}\left(1+\frac{3}{2}x+\frac{9}{4}x^2\right)$ or unsimplify	ed equivalent	A1		
			Expand and obtain sufficient terms to obtain three terms		M1		
			Obtain final answer $4 - 2x + \frac{23}{2}x^2$		A1		
		Or 3	(McLaurin expansion)				
			Obtain first derivative $f'(x) = (1+x)^{-2} - 6(1+x)^{-3} + 12($	$(2-3x)^{-2}$	M1		
			Obtain $f'(0) = 1 - 6 + 3$ or equivalent		A1		
			Obtain $f''(0) = -2 + 18 + 9$ or equivalent		A1		
			Use correct form for McLaurin expansion		M1		
			Obtain final answer $4 - 2x + \frac{25}{2}x^2$		A1	[5]	
0		a 1 ·					
9	(a)	Solve usir	ig formula, including simplification under square root sign $2 + 4i$		M1*		
		Obtain $\frac{1}{2}$	$\frac{2}{(2-i)}$ or similarly simplified equivalents		A1		
		Multiply by $\frac{2+i}{2+i}$ or equivalent in at least one case					
		Obtain fin	nal answer $-\frac{4}{5} + \frac{3}{5}i$		A1		
		Obtain fin	al answer –i		A1	[5]	

			9709	9 w13 m	s 33
	Page 8	Mark Scheme	Syllabus	Pape	r —
		GCE A LEVEL – October/November 2013	9709	33	
	(b) Show <i>w</i> i Show <i>w</i> ³ Show <i>w</i> * Use corre Obtain 10	n first quadrant with modulus and argument relatively corre- in second quadrant with modulus and argument relatively co in fourth quadrant with modulus and argument relatively co ct method for area of triangle by calculation	ct orrect orrect	B1 B1 B1 M1 A1	[5]
10	Use $2\cos^2 x =$ Separate varia Obtain $\ln(y^3 +$ Obtain = 2: Use $x = 0, y =$	$(1 + \cos 2x \text{ or equivalent})$ bles and integrate at least one side $(+1) = \dots$ or equivalent $(x + \sin 2x \text{ or equivalent})$ = 2 to find constant of integration (or as limits) in an express	sion containing	B1 M1 A1 A1	
	at least two ter	rms of the form $a \ln(v^3 + 1)$, bx or c sin 2x		M1*	
	Obtain $\ln(y^3)$	$(1) = 2x + \sin 2x + \ln 9$ or equivalent e.g. implied by correct	t constant	A1	
	Identify at leas	st one of $\frac{1}{2}\pi$ and $\frac{3}{2}\pi$ as x-coordinate at stationary point		B1	
	Use correct pr Obtain 5.9 Obtain 48.1	ocess to find <i>y</i> -coordinate for at least one <i>x</i> -coordinate		M1(0 A1 A1	d*M) [10]