		··· · • ·	97	<u>09_w13_m</u>	<u>s_3</u> 1
Page 4		Mark Scheme	Syllabus	Pape	r
		GCE A LEVEL – October/November 2013	9709	31	
1	Use corre	ct quotient or product rule		M1	
	Obtain co	prrect derivative in any form		A1	
	Justify the	e given statement		A1	[3]
•		$a_{1} = \frac{1}{2} (a_{1} + b_{2})^{2} (a_{2})^{2}$			
2	EITHER:	State or imply non-modular equation $2^{2}(3^{*}-1) = (3^{*})$,	or pair of equations		
		$2(3^{x}-1)=\pm 3^{x}$		M1	
		Obtain $3^x = 2$ and $3^x = \frac{2}{3}$ (or $3^{x+1} = 2$)		A1	
	OR:	Obtain $3^x = 2$ by solving an equation or by inspection		B1	
		Obtain $3^x = \frac{2}{2}$ (or $3^{x+1} = 2$) by solving an equation or by in	spection	B1	
	Use corre	set method for solving an equation of the form $3^x = a$ (or 3^{x+1}	$^{+1} = a$), where $a > 0$	M1	
	Obtain fi	nal answers 0.631 and -0.369		A1	[4]
3	EITHER:	Integrate by parts and reach $kx^{\frac{1}{2}} \ln x - m \int x^{\frac{1}{2}} \frac{1}{dx} dx$		M1*	
		Obtain $2x^{\frac{1}{2}} \ln x - 2 \int \frac{1}{1} dx$, or equivalent		A1	
		$x^{\overline{2}}$			
		Integrate again and obtain $2r^{\frac{1}{2}} \ln r - 4r^{\frac{1}{2}}$ or equivalent		Δ 1	
		Substitute limits $x = 1$ and $x = 4$, having integrated twice		M1(dep*)	
		Obtain answer $4(\ln 4 - 1)$, or exact equivalent		A1	
			$\frac{1}{2}u$ $\int \frac{1}{2}u$		
	OR1:	Using $u = \ln x$, or equivalent, integrate by parts and reach	$kue^2 - m \int e^2 du$	M1*	
		Obtain $2ue^{\frac{1}{2}u} - 2\int e^{\frac{1}{2}u} du$ or equivalent		Δ 1	
		$\int du$, or equivalent		AI	
		Integrate again and obtain $2ue^{\frac{1}{2}u} - 4e^{\frac{1}{2}u}$, or equivalent		A1	
		Substitute limits $u = 0$ and $u = \ln 4$, having integrated twice		M1(dep*)	
		Obtain answer $4\ln 4 - 4$, or exact equivalent		Aĺ	
	OR2:	Using $u = \sqrt{x}$, or equivalent, integrate and obtain $ku \ln u - v$	$-m\int u \cdot \frac{1}{u} du$	M1*	
		Obtain $4u \ln u - 4 \int 1 du$, or equivalent		A1	
		Integrate again and obtain $4u \ln u - 4u$, or equivalent		A1	
		Substitute limits $u = 1$ and $u = 2$, having integrated twice of	or quoted $\int \ln u \mathrm{d}u$		
		as $u \ln u \pm u$	-	M1(dep*)	
		Obtain answer $8\ln 2 - 4$, or exact equivalent		A1	
	OR3:	Integrate by parts and reach $I = \frac{x \ln x \pm x}{\sqrt{x}} + k \int \frac{x \ln x \pm x}{x\sqrt{x}} dx$		M1*	
		Obtain $I = \frac{x \ln x - x}{\sqrt{x}} + \frac{1}{x} I - \frac{1}{x} \int \frac{1}{\sqrt{x}} dx$		A1	
		\sqrt{x} 2 2 \sqrt{x}			
		Integrate and obtain $I = 2\sqrt{x} \ln x - 4\sqrt{x}$, or equivalent		A1	
		Substitute limits $x = 1$ and $x = 4$, having integrated twice Obtain answer $4 \ln 4 - 4$ or exact equivalent		$MI(dep^*)$	[5]
				A 1	[-]

			9709	<u>w13 m</u>	<u>s 31</u>
Page 5		Mark Scheme	Syllabus		•
		GCE A LEVEL – October/November 2013	9709	31	
4	Use corre	ct product or quotient rule at least once		M1*	
	Obtain $\frac{d}{d}$	$\frac{dx}{dt} = e^{-t} \sin t - e^{-t} \cos t \text{ or } \frac{dy}{dt} = e^{-t} \cos t - e^{-t} \sin t \text{ , or equivalent}$		A1	
	Use $\frac{\mathrm{d}y}{\mathrm{d}x} =$	$\frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$		M1	
	Obtain $\frac{d}{d}$	$\frac{v}{x} = \frac{\sin t - \cos t}{\sin t + \cos t}$, or equivalent		A1	
	EITHER:	Express $\frac{dy}{dx}$ in terms of tan <i>t</i> only	Μ	l(dep*)	
		Show expression is identical to $\tan\left(t - \frac{1}{4}\pi\right)$		A1	
	OR:	Express $\tan\left(t-\frac{1}{4}\pi\right)$ in terms of $\tan t$		M1	
		Show expression is identical to $\frac{dy}{dx}$		A1	[6]
5	(i)	Use Pythagoras		M1	
		Use the sin2A formula Obtain the given result		M1 A1	[3]
	(ii)	Integrate and obtain a $k \ln \sin \theta$ or $m \ln \cos \theta$ term, or obtain	integral of the form	n M1*	
		Obtain indefinite integral $\frac{1}{2} \ln \sin \theta - \frac{1}{2} \ln \cos \theta$, or equivalent, or	$r \frac{1}{2} \ln \tan \theta$	A1	
		Substitute limits correctly	2 M	1(den)*	
		Obtain the given answer correctly having shown appropriate wo	rking	A1	[4]
6	(i)	State or imply $AB = 2r\cos\theta$ or $AB^2 = 2r^2 - 2r^2\cos(\pi - 2\theta)$		B1	
		Use correct formula to express the area of sector ABC in terms o	of r and θ	M1	
		Use correct area formulae to express the area of a segment in ter	ms of <i>r</i> and θ	M1	
		State a correct equation in <i>r</i> and θ in any form		A1	
		Obtain the given answer [SR: If the complete equation is approached by adding two s area above BO and OC give the first M1 as on the scheme for using correct area formulae for a triangle AOB or AO or AOC.]	sectors to the shaded e, and the second M C, and a sector AO	Al d 1 B	[5]
	(ii)	Use the iterative formula correctly at least once		M1	
		Show sufficient iterations to 4 d.p. to justify 0.95 to 2 d.p., or	show there is a sign	A I n	
		change in the interval (0.945, 0.955)	0	A1	[3]

		-			9709_w13_ms_3		
Paç		ge 6		ne Syllabus	s Paper	_	
			GCE A LEVEL – October	November 2013 9709	31		
7		(i)	State or imply partial fractions are of th	e form $\frac{A}{x-2} + \frac{Bx+C}{x^2+3}$	B1		
			Use a relevant method to determine a co Obtain one of the values $A = -1$, $B = 3$,	C = -1	M1 A1		
			Obtain a second value Obtain the third value		A1 A1 [5]	
		(ii)	Use correct method to obtain the firs	t two terms of the expansions of ($(x-2)^{-1}$,		
			$\left(1-\frac{1}{2}x\right)^{-1}$, $\left(x^2+3\right)^{-1}$ or $\left(1+\frac{1}{3}x^2\right)^{-1}$		M1		
			Substitute correct unsimplified expapartial fraction Multiply out fully by $Bx + C$ where BC	nsions up to the term in x^2 int	to each $A1\sqrt[]{+}+A1\sqrt[]{+}$		
			Obtain final answer $\frac{1}{6} + \frac{5}{4}x + \frac{17}{72}x^2$, or	equivalent	A1 [[5]	
			[Symbolic binomial coefficients, e.g. $\left(\right)$	$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ are not sufficient for the M1. The M1 is the M1.	he f.t. is		
			on A, B, C.]	,			
			[In the case of an attempt to expand (for the expansions, M1 for multiplying [If B or C omitted from the form of	$2x^2 - 7x - 1(x - 2)^{-1}(x^2 + 3)^{-1}$, give N out fully, and A1 for the final answer. partial fractions, give B0M1A0A0A	11A1A1] 0 in (i) ;		
8	(a)	(a) <i>EITHER</i> : Solve for <i>u</i> or for <i>v</i> Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent					
		OR: Obt	<i>Either</i> : Multiply a numerator and or equivalent <i>Or</i> : Set <i>u</i> or <i>v</i> equal to $x + iy$, imaginary parts and solve for <i>x</i> or <i>x</i> Using $a + ib$ and $c + id$ for <i>u</i> and four equations in <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> Obtain $b + 2d = 2$, $a + 2c = 0$, $a +$ Solve for one unknown in final answer $u = -2$ –2i, or equivalent in final answer $v = 1 + 2i$, or equivalent	denominator by conjugate of denominator by conjugate of denominator by equating n for y v, equate real and imaginary parts and $d = 0$ and $-b + c = 3$, or equivalent t	ninator, real and d obtain M1 A1 M1 A1 A1 A1 A1	[5]	
	(b)	Sho Sho	v a circle with centre –i v a circle with radius l		B1 B1		
		Sho	v correct half line from 2 at an angle of	$\frac{3}{4}\pi$ to the real axis	B1		
		Use	a correct method for finding the least va	lue of the modulus	M1		
		Obt	in final answer $\frac{3}{\sqrt{2}} - 1$, or equivalent, e	.g. 1.12 (allow 1.1)	A1 [5]	

(i) 1	EITHE	GCE A LEVEL – October/November 2013	9709	31
(i) . (EITHE.			
(<i>R</i> : Obtain a vector parallel to the plane, e.g. $AB = -2i + 4j$	- k	B1
(Use scalar product to obtain an equation in a, b, c, e.g	g. $-2a + 4b - c =$	0,
(3a-3b+3c=0, or $a+b+2c=0$	-	M1
(Obtain two correct equations in a, b, c		A1
(Solve to obtain ratio $a:b:c$		M1
(Obtain $a:b:c=3:1:-2$, or equivalent		A1
(Obtain equation $3x + y - 2z = 1$, or equivalent		A1
	OR1:	Substitute for two points, e.g. A and B, and obta	ain $2a-b+2c =$	d
		and $3b + c = d$		B1
(Substitute for another point, e.g. C, to obtain a third equ	ation and elimination	ate
(Obtain two correct equations in three unknowns, e.g. in	a h a	
(Solve to obtain their ratio $e = a \cdot b \cdot c$	<i>а, л, с</i>	M1
(Obtain $a:h:c = 3:1:-2$ $a:c:d = 3:-2:1$	$b \cdot d = 3 \cdot 1 \cdot 1$	or
(b:c:d=-1:-2:1	.0.4 5.1.1	Al
(Obtain equation $3x + y - 2z = 1$, or equivalent		Al
	OR2:	Obtain a vector parallel to the plane, e.g. $\overrightarrow{BC} = 3\mathbf{i} - 3\mathbf{j} + \mathbf{i}$	3 k	B1
		Obtain a second such vector and calculate their vector p	roduct	
		e.g. $(-2\mathbf{i}+4\mathbf{j}-\mathbf{k})\times(3\mathbf{i}-3\mathbf{j}+3\mathbf{k})$		M1
		Obtain two correct components of the product		A1
		Obtain correct answer, e.g. $9\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$		A1
		Substitute in $9x + 3y - 6z = d$ to find d		M1
		Obtain equation $9x + 3y - 6z = 3$, or equivalent		A1
(OR3:	Obtain a vector parallel to the plane, e.g. $\overrightarrow{AC} = \mathbf{i} + \mathbf{j} + 2\mathbf{k}$	2	B1
		Obtain a second such vector and form correctly a 2-par	ameter equation	for
		the plane	1	M1
		Obtain a correct equation, e.g. $\mathbf{r} = 3\mathbf{i} + 4\mathbf{k} + \lambda(-2\mathbf{i} + 4\mathbf{j} - \mathbf{k})$	$(\mathbf{k}) + \mu(\mathbf{i} + \mathbf{j} + 2\mathbf{k})$) A1
		State three correct equations in x, y, z, λ, μ		A1
		Eliminate λ and μ		M1
		Obtain equation $3x + y - 2z = 1$ or equivalent		A1
		22 $1, 0$ 0 10 10		
(ii) (Obtain	answer $\mathbf{i} + 2\mathbf{i} + 2\mathbf{k}$, or equivalent		B1

	Page 8		97(
			Mark Scheme	Syllabus	Paper		
			GCE A LEVEL – October/November 2013	9709	31		
	(iii)	EITHI	<i>ER</i> : Use $\frac{\overrightarrow{OA}.\overrightarrow{OD}}{\left \overrightarrow{OD}\right }$ to find projection <i>ON</i> of <i>OA</i> onto <i>OD</i>		M1		
			Obtain $ON = \frac{4}{3}$		A1		
			Use Pythagoras in triangle <i>OAN</i> to find <i>AN</i> Obtain the given answer		M1 A1		
		OR1:	Calculate the vector product of \overrightarrow{OA} and \overrightarrow{OD} Obtain answer $6\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}$		M1 A1		
		OR2:	Divide the modulus of the vector product by the modul Obtain the given answer Taking general point <i>P</i> of <i>OD</i> to have position vector	us of \overrightarrow{OD} $\lambda(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$, for	M1 A1 m		
			an equation in λ by either equating the scalar produc	t of \overrightarrow{AP} and \overrightarrow{OP} t	:0 *		
			zero, or using Pythagoras in triangle <i>OPA</i> , or setting the zero	the derivative of $ AF $	M1		
			Solve and obtain $\lambda = \frac{4}{9}$		A1		
			Carry out method to calculate AP when $\lambda = \frac{4}{9}$		M1		
		OR3:	Obtain the given answer Use a relevant scalar product to find the cosine of <i>AOE</i>) or ADO	A1 M1		
			Obtain $\cos AOD = \frac{4}{9}$ or $\cos ADO = \frac{5}{3\sqrt{10}}$, or equivale	nt	A1		
		OR4:	Use trig to find the length of the perpendicular Obtain the given answer Use cosine formula in triangle <i>AOD</i> to find cos <i>AOD</i> o	r cos ADO	M1 A1 M1		
			Obtain $\cos AOD = \frac{8}{18}$ or $\cos ADO = \frac{10}{6\sqrt{10}}$, or equival	ent	A1		
			Use trig to find the length of the perpendicular Obtain the given answer		M1 A1	[4]	
10	(i)	State of	or imply $V = \pi h^3$		B1		
		State	or imply $\frac{\mathrm{d}V}{\mathrm{d}t} = -k\sqrt{h}$		B1		
		Use $\frac{d}{d}$	$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$, or equivalent		M1		
		Obtaiı	n the given equation		A1	[4]	
		[The	M1 is only available if $\frac{\mathrm{d}V}{\mathrm{d}h}$ is in terms of h and has	been obtained by	a		
		correc	et method.]				
		[Allow	w B1 for $\frac{dv}{dt} = k\sqrt{h}$ but withhold the final A1 until the po	larity of the constar	nt		
		$\frac{\kappa}{3\pi}$ h	as been justified.]				

Page 9		Mark Scheme	Syllabus	Paper	• -
	GC	E A LEVEL – October/November 2013	9709	31	
(ii)	Separate varia	bles and integrate at least one side		M1	
	Obtain terms	$\frac{2}{5}h^{\frac{5}{2}}$ and $-At$, or equivalent		A1	
	Use $t = 0, h = H$ in a solution containing terms of the form $ah^{\frac{5}{2}}$ and $bt + c$			M1	
	Use $t = 60, h =$	= 0 in a solution containing terms of the form $ah^{\frac{5}{2}}$	and $bt + c$	M1	
	Obtain a corre	ect solution in any form, e.g. $\frac{2}{5}h^{\frac{5}{2}} = \frac{1}{150}H^{\frac{5}{2}}t + \frac{2}{5}H^{\frac{5}{2}}t$	$I^{\frac{5}{2}}$	A1	
(ii)	Obtain final a	nswer $t = 60 \left(1 - \left(\frac{h}{H}\right)^{\frac{5}{2}} \right)$, or equivalent		A1	[6]

(iii) Substitute
$$h = \frac{1}{2}H$$
 and obtain answer $t = 49.4$ B1 [1]