				9709	<u> </u>			
	Page 4	Mark Scheme		Syllabus	Paper			
			GCE AS	LEVEL – Octobe	r/November 2013	9709	23	
					() 2 () 2			
1	<u>Either</u>	State	or imply non-n	nodular inequality	$(x+1)^2 < (3x+5)^2$, or			
		corre	sponding equat	ion or pair of linear	equations		M1	
		Make	e reasonable sol	ution attempt at a 3	-term quadratic, or solve			
		two l	inear equations				M1	
		Obta	in critical value	s -2 and $-\frac{3}{2}$			Al	
		State	correct answer	$x < -2$ or $x > -\frac{3}{2}$			A1	
	Or	Obtain one critical value, e.g. $x = -2$, by solving a linear equation (or inequality)						
		or fro	om a graphical i	nethod or by inspec	ction		B1	
		Obta	in the other crit	ical value similarly			B2	
		State	correct answer	$x < -2$ or $x > -\frac{3}{2}$			B1	[4]
2	(i)	Cons	ider sign of x^4	+2x - 9 at $x = 1.5$ a	and $x = 1.6$		M1	
		Com	plete the argum	ent correctly with a	ppropriate calculations		A1	[2]
		(f(1.:	(5) = -0.9375, f(1)	1.6) = 0.7536)				
	(ii)	Rear	range $x^4 + 2x - $	9 = 0 to given equa	tion or vice versa		B1	[1]
	(iii)	Use t	he iterative for	nula correctly at lea	ast once		M1	
	()	Obta	in final answer	1.56			A1	
		Show	sufficient itera	ations to justify its a	ccuracy to 2 d.p.		B1	[3]
		$x_0 =$	= 1.5	$x_0 = 1.55$	$x_0 = 1.6$			
			1.5874	1.5614	1.5362			
			1.5424	1.5556	1.5685			
			1.5653		1.5520			
			1.5536		1.5604			

or show there is a sign change in the interval (1.555, 1.565)

1 5595

1.5565

4

3	Obtain derivative $e^{2x} - 5e^x + 4$	B1	
	Equate derivative to zero and carry out recognisable solution method for a quadratic in e ^x	M1	
	Obtain $e^x = 1$ or $e^x = 4$	A1	
	Obtain $x = 0$ and $x = \ln 4$	A1	
	Use an appropriate method for determining nature of at least one stationary point	M1	
	$\left(\frac{d^2 y}{dx^2} = 2e^{2x} - 5e^x, \text{ when } x = 0, \frac{d^2 y}{dx^2} = -(3), x = \ln 4, \frac{d^2 y}{dx^2} = +(12)\right)$		
	Conclude maximum at $x = 0$ and minimum at $x = \ln 4$ (no errors seen)	A1	[6]

1.5561

(i)	Substitute $x = 3$ and equate to 14 $(9a + 3b + 35 = 14)$	M1	
	Substitute $x = -2$ and equate to 24 $(4a - 2b = 24)$	M1	
	Obtain a correct equation in any form	A1	
	Solve a relevant pair of equations for <i>a</i> or for <i>b</i>	M1	
	Obtain $a = 1$ and $b = -10$	A1	[5]

© Cambridge International Examinations 2013

Page 5		ge 5	5 Mark Scheme Syllabus	Paper	<u> </u>
			GCE AS LEVEL – October/November 2013 9709	23	
		(ii)	Attempt division by $x^2 + 2x - 8$ and reach a partial quotient of $x - k$ Obtain quotient $x - 1$ with no errors seen (can be done by observation) Correct solution method for quadratic e.g. factorisation All solutions $x = 1$, $x = 2$ and $x = -4$ given and no others CWO	M1 A1 M1 A1	[4]
5		(i)	State $\frac{dx}{d\theta} = -2\sin 2\theta + \sin \theta$ or $\frac{dy}{d\theta} = 8\sin \theta \cos \theta$	B1	
			Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$	M1	
			Use $\sin 2\theta = 2\sin\theta\cos\theta$ Obtain given answer correctly	M1 A1	[4]
		(ii)	Equate derivative to -4 and solve for $\cos \theta$ Obtain $\cos \theta = \frac{1}{2}$ Obtain $x = -1$ Obtain $y = 3$	M1 A1 A1 A1	[4]
6	(a)	(i)	Attempt to divide by e^{2x} and attempt to integrate 2 terms Integrate a term of form ke^{-2x} correctly Fully correct integral $x - 3e^{-2x}$ (+ <i>c</i>)	M1 A1√ [▲] A1	[3]
		(ii)	State correct expression $\frac{1}{2}\cos 2x + \frac{1}{2}$ or equivalent	B1	
			Integrate an expression of the form $a + b \cos 2x$, where $ab \neq 0$, correctly	M1	
			State correct integral $\frac{3\sin 2x}{4} + \frac{3x}{2}(+c)$	A1	[3]
	(b)	Stat Use Obt	te or imply correct ordinates 5.46143, 4.78941, 4.32808 e correct formula, or equivalent, correctly with $h = 0.5$ and three ordinates tain answer 4.84 with no errors seen	B1 M1 A1	[3]
7		(i)	State $R = \sqrt{10}$ Use trig formula to find α Obtain $\alpha = 18.43^{\circ}$ with no errors seen	B1 M1 A1	[3]
		(ii)	Carry out evaluation of $\cos^{-1}\left(\frac{2}{R}\right) \approx 50.77^{\circ}$	M1	
			Carry out correct method for one correct answer Obtain one correct answer e.g. 34.6° Carry out correct method for a further answer Obtain remaining 3 answers 163.8°, 214.6°, 343.8° and no others in the range	M1 A1 M1 A1	[5]