Page 4	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - October/November 2013	9709	23

1 Either State or imply non-modular inequality $(x+1)^{2}<(3 x+5)^{2}$, or corresponding equation or pair of linear equations
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equationsM1

Obtain critical values -2 and $-\frac{3}{2}$

State correct answer $x<-2$ or $x>-\frac{3}{2}$

Or Obtain one critical value, e.g. $x=-2$, by solving a linear equation (or inequality) or from a graphical method or by inspectionB1

Obtain the other critical value similarly B2

State correct answer $x<-2$ or $x>-\frac{3}{2}$
B1

2
(i) Consider sign of $x^{4}+2 x-9$ at $x=1.5$ and $x=1.6$

Complete the argument correctly with appropriate calculations A1
$(\mathrm{f}(1.5)=-0.9375, \mathrm{f}(1.6)=0.7536)$
(ii) Rearrange $x^{4}+2 x-9=0$ to given equation or vice versa
(iii) Use the iterative formula correctly at least once

Obtain final answer 1.56
Show sufficient iterations to justify its accuracy to 2 d.p.

$x_{0}=1.5$	$x_{0}=1.55$	$x_{0}=1.6$
1.5874	1.5614	1.5362
1.5424	1.5556	1.5685
1.5653		1.5520
1.5536		1.5604
15595		1.5561
1.5565		

or show there is a sign change in the interval $(1.555,1.565)$

3 Obtain derivative $\mathrm{e}^{2 x}-5 \mathrm{e}^{x}+4$
B1
Equate derivative to zero and carry out recognisable solution method for a quadratic in e^{x}
Obtain $\mathrm{e}^{x}=1$ or $\mathrm{e}^{x}=4$
Obtain $x=0$ and $x=\ln 4$
Use an appropriate method for determining nature of at least one stationary point
$\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 \mathrm{e}^{2 x}-5 \mathrm{e}^{x}\right.$, when $\left.x=0, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-(3), x=\ln 4, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=+(12)\right)$
Conclude maximum at $x=0$ and minimum at $x=\ln 4$ (no errors seen)

Substitute $x=-2$ and equate to $24 \quad(4 a-2 b=24)$
Obtain a correct equation in any form
Solve a relevant pair of equations for a or for b M1
Obtain $a=1$ and $b=-10$ A1

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS LEVEL - October/November 2013	9709	23

(ii) Attempt division by $x^{2}+2 x-8$ and reach a partial quotient of $x-k$
Obtain quotient $x-1$ with no errors seen (can be done by observation)
Correct solution method for quadratic e.g. factorisation M1
All solutions $x=1, x=2$ and $x=-4$ given and no others CWO
(i) State $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=-2 \sin 2 \theta+\sin \theta$ or $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=8 \sin \theta \cos \theta$

Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} \theta} \div \frac{\mathrm{d} x}{\mathrm{~d} \theta}$
Use $\sin 2 \theta=2 \sin \theta \cos \theta$ M1
Obtain given answer correctly A1
(ii) Equate derivative to -4 and solve for $\cos \theta$ M1

Obtain $\cos \theta=1 / 2$ A1
Obtain $x=-1 \quad$ A1
Obtain $y=3$ A1

6 (a) (i) Attempt to divide by $\mathrm{e}^{2 x}$ and attempt to integrate 2 terms
Integrate a term of form $k \mathrm{e}^{-2 x}$ correctly
Fully correct integral $x-3 \mathrm{e}^{-2 x}(+c)$
(ii) State correct expression $\frac{1}{2} \cos 2 x+\frac{1}{2}$ or equivalent B1

Integrate an expression of the form $a+b \cos 2 x$, where $a b \neq 0$, correctly M1
State correct integral $\frac{3 \sin 2 x}{4}+\frac{3 x}{2}(+c)$ A1
(b) State or imply correct ordinates $5.46143 \ldots, 4.78941 \ldots, 4.32808 \ldots \quad$ B1

Use correct formula, or equivalent, correctly with $h=0.5$ and three ordinates
Obtain answer 4.84 with no errors seen
(i) State $R=\sqrt{10} \quad$ B1

Use trig formula to find α
Obtain $\alpha=18.43^{\circ}$ with no errors seen
(ii) Carry out evaluation of $\cos ^{-1}\left(\frac{2}{R}\right)\left(\approx 50.77^{\circ}\right)$
Carry out correct method for one correct answer M1

Obtain one correct answer e.g. 34.6 ${ }^{\circ}$ A1
Carry out correct method for a further answer M1
Obtain remaining 3 answers $163.8^{\circ}, 214.6^{\circ}, 343.8^{\circ}$ and no others in the range A1

