Page 4	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - October/November 2013	$\mathbf{9 7 0 9}$	$\mathbf{2 2}$

1 (i) State indefinite integral of the form $k \ln (4 x-1)$, where $k=2$, 4, or $1 / 2$ M1
State correct integral $1 / 2 \ln (4 x-1)$ A1(ii) Substitute limits correctlyM1
Use law for the logarithm of a power or a quotient M1
Obtain $\ln 3$ correctly A1
2 Use quotient or product rule M1
Obtain correct derivative in any form A1
Equate (numerator) of derivative to zero and solve for x DM1
Obtain $x=\frac{1}{3}$ A1
Obtain $y=\frac{3}{2}$A1
3 Use trig identity correctly to obtain a quadratic in $\operatorname{cosec} \theta$ or $\sin \theta$ M1
Solve the quadratic correctly M1
Obtain $\sin \theta=1 / 4$ or $-2 / 3$ A1
Obtain one correct answer A1
Carry out correct method for second answer from either root DM1
Obtain remaining 3 answers from $14.5,165.5,221.8,318.2$ and no others in the range A1[Ignore answers outside the given range](i) Substitute $x=3$ or $x=-2$ and equate to zeroM1
Obtain a correct equation in any form A1
Obtain a second correct equation in any form A1
Solve a relevant pair of equations for a or for b M1
Obtain $a=4$ and $b=-3$ A1
(ii) Attempt division by $x+2$ (or $x-3$) and obtain partial quotient of $a x^{2}+k x$ M1
Obtain linear factors $4 x+1, x+2$ and $x-3$ A1
[If linear factor $4 x+1$ obtained by remainder theorem or inspection, award B2]

$$
\begin{equation*}
\text { [If linear factor } 4 x+1 \text { obtained by division by } x^{2}-x-6, \text { award M1 A1] } \tag{2}
\end{equation*}
$$

Alternative Method:

Attempt to form identity $\left(x^{2}-x-6\right)(r x+s) \equiv a x^{3}+b x^{3}-25 x-6 \quad$ M1
Attempt to equate like terms M1
Leads to $s=1 \mathrm{~B} 1, r=4 \mathrm{~A} 1, b=-3 \mathrm{~A} 1, a=4$ A1
Obtain linear factors $4 x+1, x+2$ and $x-3$ A1

Page 5	Mark Scheme	Syllabus	Paper

GCE AS LEVEL - October/November 2013
9709
22

5
(i) State $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{2} t^{-\frac{1}{2}}$ or $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{3}{t}$ B1

Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$
Use $y=6$ to find t M1
Obtain $t=\mathrm{e}^{2} \quad$ A1
Obtaind $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6}{\mathrm{e}}$
(ii) Obtain x and form equation of the tangent at their point

Obtain correct equation for tangent $\left(y-6=\frac{6}{\mathrm{e}}(x-(1+\mathrm{e}))\right)$
Show that tangent passes through $(1,0)$ by substitution

6 (a) Expand brackets and use $\sin ^{2} x+\cos ^{2} x=1$
Obtain $1-\sin 2 x$
Integrate and obtain term of form $\pm k \cos 2 x$, where $k=1 / 2,1$ or 2 M1
State correct integral $x+\frac{\cos 2 x}{2}(+c)$ A1
(b) (i) State or imply correct ordinates $1.4142 \ldots, 1.0823 \ldots, 1$

Use correct formula, or equivalent, correctly with $h=\frac{\pi}{8}$ and three ordinates
Obtain answer 0.899 with no errors seen

9709 w 13 ms 22	
us	Paper

(i) Integrate to obtain terms $4 x^{2}$ and $\frac{1}{2} \mathrm{e}^{x}$

B1 + B1
M1
Substitute limits correctly
Obtain correct equation in any form $4 a^{2}+\frac{1}{2} \mathrm{e}^{a}-\frac{1}{2}=\frac{1}{2}$
Rearrange to given answer correctly
(ii) Consider sign of $\sqrt{\frac{2-e^{a}}{8}}-a$, or equivalent

Complete the argument correctly with appropriate calculations $(\mathrm{f}(0.2)=0.112, \mathrm{f}(0.3)=-0.015)$
(iii) Use the iterative formula correctly at least once

Obtain final answer 0.29
Show sufficient iterations to justify its accuracy to 2 d.p.

$x_{0}=0.2$	$x_{0}=0.25$	$x_{0}=0.3$
0.3120	0.2992	0.2851
0.2815	0.2853	0.2894
0.2905	0.2894	
0.2879		

or show there is a sign change in the interval $(0.285,0.295)$

