Page 4			Mark Scheme		Paper	
	U	GCE AS L	EVEL – October/November 2013	9709	22	
1	(i)	State indefinite integr	ral of the form $k \ln (4x - 1)$, where $k = 2, 4$, or $\frac{1}{2}$	M1	
		State correct integral	$\frac{1}{2}\ln(4x-1)$		A1	[2]
	(ii)	Substitute limits corre	ectly		M1	
		Use law for the logar Obtain ln 3 correctly	ithm of a power or a quotient		M1 A1	[3]
2	Use quot	ent or product rule			M1	
	Obtain co	rect derivative in any	y form		A1	
	Equate (1	imerator) of derivativ	ve to zero and solve for <i>x</i>		DM1	
	Obtain <i>x</i>	$=\frac{1}{3}$			A1	
	Obtain y	$=\frac{3}{2}$			A1	[5]
3	Use trig	entity correctly to ob	otain a quadratic in cosec θ or sin θ		M1	
	Solve the quadratic correctly				M1	
	Obtain $\sin \theta = \frac{1}{4}$ or $-\frac{2}{3}$			A1		
	Obtain one correct answer Carry out correct method for second answer from either root				AI DM1	
	Obtain re	naining 3 answers from	5000000000000000000000000000000000000	in the range	A1	
	[Ignore a	swers outside the giv	ven range]			[6]
4	(i)	Substitute $x = 3$ or $x =$	= -2 and equate to zero		M1	
		Obtain a correct equa	tion in any form		A1	
		Obtain a second corre	ect equation in any form		A1	
		Solve a relevant pair $a = 4$ and $b = 1$	of equations for a or for b			[5]
		$\int \partial t d \ln u = 4$ and $v = -$	5		AI	[3]
	(ii)	Attempt division by a	x + 2 (or $x - 3$) and obtain partial quotient of	of $ax^2 + kx$	M1	
		Obtain linear factors	4x + 1, x + 2 and $x - 3$		A1	
		If linear factor $4x + $	1 obtained by remainder theorem or inspec	tion, award B2]		
		If linear factor $4x + 1$	1 obtained by division by $x^2 - x - 6$, aw	ard M1 A1]		[2]
		Alternative Method	:			
		Attempt to form iden	tity $(x^2 - x - 6)(rx + s) \equiv ax^3 + bx^3 - 25x - 6$	5	M1	
		Attempt to equate like	e terms		M1	
		Leads to $s = 1 \text{ B1}, r$	=4 A1, <i>b</i> =-3 A1, <i>a</i> =4		A1	
		Obtain linear factors	4x + 1, x + 2 and $x - 3$		A1	

				9709	'09 w13 ms 22		
Page 5		e 5	Mark Scheme Sylla		Paper	Paper	
			GCE AS LEVEL – October/November 2013	9709	22		
5	(i	i) State	$e \frac{dx}{dt} = \frac{1}{2}t^{-\frac{1}{2}} \text{ or } \frac{dy}{dt} = \frac{3}{t}$ $\frac{dy}{dt} = \frac{dy}{dt} + \frac{dy}{dt} = \frac{3}{t}$		B1		
		Use	$\frac{dx}{dt} = \frac{dt}{dt} + \frac{dt}{dt}$		M1		
		Obt	y = 0 to find t in $t = e^2$		A 1		
			dy = 6		A 1	[6]	
		Obta	$\frac{dx}{dx} = -\frac{1}{e}$		AI	[2]	
	(ii	i) Obta	in x and form equation of the tangent at their point		M1		
		Obta	in correct equation for tangent $\left(y-6=\frac{6}{e}(x-(1+e))\right)$		A1		
		Show	w that tangent passes through $(1, 0)$ by substitution		A1	[3]	
6	(a) E	xpand b	rackets and use $\sin^2 x + \cos^2 x = 1$		M1		
	C	btain 1	$-\sin 2x$		A1		
	11	itegrate	and obtain term of form $\pm k \cos 2x$, where $k = \frac{1}{2}$, 1 or 2		MI		
	S	tate cor	rect integral $x + \frac{\cos 2x}{2}(+c)$		A1	[4]	
	(b) (i	i) State	e or imply correct ordinates 1.4142, 1.0823, 1		B1		
		Use	correct formula, or equivalent, correctly with $h = \frac{\pi}{8}$ and thr	ee ordinates	M1		
		Obta	in answer 0.899 with no errors seen		A1	[3]	
	(ii	i) Mak	e a recognisable sketch of $y = \operatorname{cosec} x$ for $0 < x \le \frac{1}{2}\pi$		B1		

Justify statement that the trapezium rule gives an over-estimate B1 [2]

				9709 w13 ms 21			
	Page 6	Mark Scheme		Syllabus	Paper		
		GCE AS I	_EVEL – Octobe	r/November 2013	9709	22	
			2				
7	(i) 1	Integrate to obtain te	$rms 4x^2$ and $\frac{1}{2}e^x$			B1 + B1	
	:	Substitute limits corr	rectly			M1	
		Obtain correct equat	ion in any form 4	$a^{2} + \frac{1}{2}e^{a} - \frac{1}{2} = \frac{1}{2}$		A1	
]	Rearrange to given a	nswer correctly			A1	[5]
	(ii)	Consider sign of $\sqrt{2}$	$\frac{1}{2-e^a}{a} - a$, or equi	valent		M1	
	(Complete the argum $(f(0.2)=0.112, f(0.2))$	ent correctly with $a_{3} = -0.015$	ppropriate calculations		A1	[2]
	(iii)	Use the iterative form		M1			
		Obtain final answer	0.29			A1	
	:	Show sufficient itera		B1			
		$x_0 = 0.2$	$x_0 = 0.25$	$x_0 = 0.3$			
		0.3120	0.2992	0.2851	7		
		0 2815	0 2853	0 2894			

or show there is a sign change in the interval (0.285, 0.295)

0.2894

0.2905

0.2879

[3]