	Daga		Mark Sahar			<u>w13 m</u>	
	Page 4		Mark Scher		Syllabus	Paper	ſ
		GUE AS	LEVEL – Octobel	r/November 2013	9709	21	
1	<u>Either</u> State or imply non-modular inequality $(x + 1)^2 < (3x + 5)^2$, or corresponding equation or pair of linear equations Make reasonable solution attempt at a 3-term quadratic, or solve				M1		
		two linear equations	•	terini quadratic, or sorve		M1	
		Obtain critical value				Al	
			2				
		State correct answer	$x < -2$ or $x > -\frac{3}{2}$			A1	
	0	Obtain and aritical a	······································	· · · · · · · · · · · · · · · · · · ·	· (:		
	<u>Or</u>	or from a graphical		v solving a linear equation	n (or inequality)	B1	
		Obtain the other crit				B1 B2	
		State correct answer	•			B1	[4]
		State contect answer	2 01 2 2 01 2 2			DI	נדן
2	(i)	Consider sign of x^4	+2x - 9 at $x = 1.5$ a	and $x = 1.6$		M1	
-	()		nent correctly with a	ppropriate calculations		Al	[2]
	(ii)	Rearrange $x^4 + 2x - $	9 = 0 to given equat	tion or vice versa		B1	[1]
	<		1 .1 .1				
	(iii)	Use the iterative for		ast once		M1	
		Obtain final answer		accuracy to 2 d m		A1 D1	[2]
		Show sufficient iter	ations to justify its a	couracy to 2 d.p.		B1	[3]
		$x_{\rm o} = 1.5$	$x_{\rm o} = 1.55$	$x_{\rm o} = 1.6$			
		1.5874	1.5614	1.5362			
		1.5424	1.5556	1.5685			
		1.5653		1.5520			
		1.5536		1.5604			

or show there is a sign change in the interval (1.555, 1.565)

1 5595

1.5565

4

3	Obtain derivative $e^{2x} - 5e^x + 4$	B1	
	Equate derivative to zero and carry out recognisable solution method for a quadratic in e^x	M1	
	Obtain $e^x = 1$ or $e^x = 4$	A1	
	Obtain $x = 0$ and $x = \ln 4$	A1	
	Use an appropriate method for determining nature of at least one stationary point	M1	
	$\left(\frac{d^2 y}{dx^2} = 2e^{2x} - 5e^x, \text{ when } x = 0, \frac{d^2 y}{dx^2} = -(3), x = \ln 4, \frac{d^2 y}{dx^2} = +(12)\right)$		
	Conclude maximum at $x = 0$ and minimum at $x = \ln 4$ (no errors seen)	A1	[6]

1.5561

Substitute $x = 3$ and equate to 14 $(9a + 3b + 35 = 14)$	M1	
Substitute $x = -2$ and equate to 24 $(4a - 2b = 24)$	M1	
Obtain a correct equation in any form	A1	
Solve a relevant pair of equations for a or for b	M1	
Obtain $a = 1$ and $b = -10$	A1	[5]
	Obtain a correct equation in any form Solve a relevant pair of equations for a or for b	Substitute $x = -2$ and equate to 24 $(4a - 2b = 24)$ M1Obtain a correct equation in any formA1Solve a relevant pair of equations for a or for b M1

Page 5		5	Mark Scheme	Syllabus	<u>9709_w13_ms</u> ous Paper	
		-	GCE AS LEVEL – October/November 2013	9709	21	
	(ii)	Obta Corre	npt division by $x^2 + 2x - 8$ and reach a partial quotient of x in quotient $x - 1$ with no errors seen (can be done by observect solution method for quadratic e.g. factorisation olutions $x = 1$, $x = 2$ and $x = -4$ given and no others CWO		M1 A1 M1 A1	[4]
	(i)		$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -2\sin 2\theta + \sin \theta \text{or} \frac{\mathrm{d}y}{\mathrm{d}\theta} = 8\sin \theta \cos \theta$		B1	
		Use	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} \div \frac{\mathrm{d}x}{\mathrm{d}\theta}$		M1	
			$\sin 2\theta = 2\sin\theta\cos\theta$		M1	
		Obta	in given answer correctly		A1	[4]
	(ii)		te derivative to -4 and solve for $\cos \theta$		M1	
			$\sin \cos \theta = \frac{1}{2}$		A1	
			in x = -1 in y = 3		A1 A1	[4]
		0014	my = 5		AI	נדן
5 ((a) (i)	Atter	npt to divide by e^{2x} and attempt to integrate 2 terms		M1	
		Integ	rate a term of form ke^{-2x} correctly		A1	
		Fully	correct integral $x - 3e^{-2x} (+c)$		A1	[3]
	(ii)	State	correct expression $\frac{1}{2}\cos 2x + \frac{1}{2}$ or equivalent		B1	
		-	rate an expression of the form $a + b \cos 2x$, where $ab \neq 0$, correctly	M1	
		State	correct integral $\frac{3\sin 2x}{4} + \frac{3x}{2}(+c)$		A1	[3]
			nply correct ordinates 5.46143, 4.78941, 4.32808		B1	
			ct formula, or equivalent, correctly with $h = 0.5$ and three or	dinates	M1	[2]
	Ob	tain an	swer 4.84 with no errors seen		A1	[3]
	(i)	State	$R = \sqrt{10}$		B1	
	(1)		rig formula to find α		M1	
			in $\alpha = 18.43^{\circ}$ with no errors seen		Al	[3]
	(ii)	Carry	y out evaluation of $\cos^{-1}\left(\frac{2}{R}\right) (\approx 50.77^{\circ})$		M1	
		-	y out correct method for one correct answer		M1	
			in one correct answer e.g. 34.6°		A1	
			y out correct method for a further answer in remaining 3 answers 163.8°, 214.6°, 343.8° and no othe	rs in the range	M1 A1	[5]