Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9709	13

$1(x+1)(x-2)$ or other valid method $\begin{aligned} & -1,2 \\ & x<-1, x>2 \end{aligned}$	M1 A1 A1 [3]	Attempt soln of eqn or other method Penalise \leq, \geq
$2 f(x)=2 x^{-\frac{1}{2}}+x(+c)$	M1A1 M1 A1 [4]	Attempt integ $x^{-\frac{1}{2}}$ or $+x$ needed for M Sub $(4,5) . c$ must be present
3 (i) gradient of perpendicular $=-1 / 2$ soi $y-1=-1 / 2(x-3)$ (ii) $\begin{aligned} & C=(-9,6) \\ & A C^{2}=[3-(-9)]^{2}+[1-6]^{2}(\mathrm{ft} \text { on their } C) \\ & A C=13 \end{aligned}$	B1 B1 [2] B1 M1 A1 [3]	soi in (i) or (ii) $\begin{aligned} & \text { OR } A B^{2}=[3-(-21)]^{2}+[1-11]^{2} \text { M1 } \\ & A B=26 \text { A1 } \\ & A C=13 \text { A1 } \end{aligned}$
4 $\begin{array}{ll} \text { (i) } \quad & \mathbf{O D}=4 \mathbf{i}+3 \mathbf{j} \\ & \mathbf{C D}=4 \mathbf{i}+3 \mathbf{j}-10 \mathbf{k} \end{array}$ (ii) $\begin{aligned} & \mathbf{O D} \cdot \mathbf{C D}=9+16=25 \\ & \|\mathbf{O D}\|=\sqrt{ } 25 \text { or }\|\mathbf{C D}\|=\sqrt{ } 125 \\ & 25=\sqrt{25} \times \sqrt{125} \times \cos \theta \text { oe } \\ & \left.\mathrm{ODC}=63.4^{\circ} \quad \text { (or } 1.11 \text { rads }\right) \end{aligned}$	B1 B1^ [2] M1 M1 M1 A1 [4]	for OD - 10k Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ Correct method for moduli All connected correctly cao
5 (a) $\begin{aligned} & \frac{a}{1-r}=8 a \Rightarrow 1(a)=8(a)(1-r) \\ & r=\frac{7}{8} \text { oe } \end{aligned}$ (b) $\begin{aligned} & a+4 d=197 \\ & \frac{10}{2}[2 a+9 d]=2040 \\ & d=14 \end{aligned}$	B1 B1 [2] B1 B1 M1A1	Or $2 a+9 d=408$ Attempt to solve simultaneously
6 (i) $\begin{aligned} & \text { (i) sector areas are } \frac{1}{2} 11^{2} \alpha, \frac{1}{2} 5^{2} \alpha \\ & k=\frac{\frac{1}{2} \times 11^{2} \alpha-\frac{1}{2} \times 5^{2} \alpha}{\frac{1}{2} \times 5^{2} \alpha} \\ & k=\frac{96}{25} \text { or } 3.84 \end{aligned}$	B1 M1 A1 [3]	Sight of $11^{2}, 5^{2}$ Or $\frac{11^{2}-5^{2}}{5^{2}}$

Page 5 Mark Scheme	Syllabus	Paper	
	GCE A LEVEL - October/November 2013	9709	13

$\text { (ii) } \begin{aligned} & \text { perimeter shaded region }=11 \alpha+5 \alpha+6+ \\ & 6=16 \alpha+12 \\ & \text { perimeter unshaded region }=5 \alpha+5+5= \\ & 5 \alpha+10 \\ & 16 \alpha+12=2(5 \alpha+10) \\ & \alpha=4 / 3 \text { or } 1.33 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	
7 (a) $\begin{aligned} & x^{2}-1=\sin \frac{\pi}{3} \\ & x= \pm 1.366 \end{aligned}$ (b) $\begin{aligned} & 2 \theta+\frac{\pi}{3}=\frac{5 \pi}{6}\left(\text { or } \frac{13 \pi}{6} \text { or } \frac{\pi}{6}\right) \\ & 2 \theta=\frac{\pi}{2}=\left(\text { or } \frac{11 \pi}{6}\right) \\ & \theta=\frac{\pi}{4}, \frac{11 \pi}{12} \end{aligned}$	B1 M1 A1A1 [4]	\checkmark for negative of $1^{\text {st }}$ answer 1 correct angle on RHS is sufficient Isolating 2θ SC decimals $0.785 \& 2.88$ scores M1B1
$8 \quad$ (i) $81\left(x^{8}\right)$ (ii) $10 \times 3^{3}\left(x^{8}\right)$ soi leading to their answer $270\left(x^{8}\right)$ (iii) $\mathrm{k} \times$ (i) 405 soi + (ii) $675\left(x^{8}\right)$		B1 for $10,5 \mathrm{C} 2$ or 5 C 3 . B1 for 3^{3}. But must be multiplied. $\mathrm{k} \neq 1,0$
9 $\begin{aligned} & \frac{d y}{d x}=-k^{2}(x+2)^{-2}+1=0 \\ & x+2= \pm k \\ & x=-2 \pm k \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 k^{2}(x+2)^{-3} \end{aligned}$ When $x=-2=k, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\left(\frac{2}{k}\right)$ which is (>0) min When $x=-2-k, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\left(\frac{2}{-k}\right)$ which is (<0) max	M1A1 DM1 A1 M1 M1 A1 A1	Attempt differentiation \& set to zero Attempt to solve cao Attempt to differentiate again Sub their x value with k in it into $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ Only 1 of bracketed items needed for each but $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and x need to be correct.

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9709	13

10 (i) Range is $(\mathrm{y}) \geq c^{2}+4 c$
B1 Allow >
$x^{2}+4 x=(x+2)^{2}-4$
OR $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+4=0$
(Smallest value of c is) -2
A1
-2 with no (wrong) working gets B2
[3]

B1
$(a+b)^{2}+4(a+b)=21$
$(11-5 a+a)^{2}+4(11-5 a+a)=21$
B1
M1
(8) $\left(2 a^{2}-13 a+18\right)=(8)(2 a-9)(a-2)$

M1
OR corresponding equation in b
$=0$
$\mathrm{a}=\frac{9}{2}, 2$ OR $b=\left(-\frac{23}{2}\right), 1$

Alt. (ii) Last 5 marks

$$
\begin{array}{ll}
\mathrm{f}^{-1}(x)=\sqrt{x+4}-2 & \mathrm{~B} 1 \\
\mathrm{~g}(1)=\mathrm{f}^{-1}=(21) \text { used } & \mathrm{M} 1 \\
a+b=\sqrt{25}-2=3 & \mathrm{~A} 1 \\
\text { Solve } a+b=3,5 a+b=11 \mathrm{M} 1 \\
a=2, b=1 & \mathrm{~A} 1
\end{array}
$$

11
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{1}{2}(x 4+4 x+4)^{-\frac{1}{2}}\right] \times\left[4 x^{3}+4\right]$

At $x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} \times \frac{1}{2} \times 4=(1)$
Equation is $y-2=x$
(ii) $x+2=\sqrt{x^{4}+4 x+4} \Rightarrow(x+2)^{2}$
$=x 4+4 x+4$
$x^{2}-x^{4}=0$ oe
$x=0, \pm 1$
(iii) $(\pi)\left[\frac{x^{5}}{5}+2 x^{2}+4 x\right]$
$(\pi)\left[0-\left(\frac{-1}{5}+2-4\right)\right]$
$\frac{11 \pi}{5}$ (6.91) oe

B1B1

M1
A1
[4]

B1

B1
B2,1,0
[4]

M1A1 Attempt to integrate y^{2}

DM1

A1 differentiation.

AG www

Attempt to integrate y^{2}

Apply limits $-1 \rightarrow 0$

OR (8) $(2 b+23)(b-1)=0$

A1 for either a or b correct. Condone $2^{\text {nd }}$
value. Spotted solution scores only B marks.
[6]

Alt. (ii) Last 4 marks
$(a+b+7)(a+b-3)=0$
M1A1
(Ignore solution involving $a+b=-7$)
Solve $a+b=3,5 a+b=11 \quad$ M1
$a=2, b=1$
A1

Sub $x=0$ and attempt eqn of line following

