Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	12

(i) $\sin x=\sqrt{ }\left(1-p^{2}\right)$ (ii) $\tan x=\frac{\sin x}{\cos x}=\frac{\sqrt{1-p^{2}}}{p}$ (iii) $\tan (90-x)=\frac{p}{\sqrt{1-p^{2}}}$	B1 [1] B1§ $[1]$ [1] B1 \downarrow [1]	Allow $1-p$ if following $\sqrt{ }\left(1-p^{2}\right)$ \pm is $B 0$. \checkmark for answer to (i) used. \checkmark for reciprocal of (ii)
(i) slant length $=10 \mathrm{~cm}$. circumference of base $=12 \pi$ arc length $=10 \theta(=12 \pi)$ $\rightarrow \theta=1.2 \pi$ or 3.77 radians. (ii) $1 / 2 r^{2} \theta=188.5 \mathrm{~cm}^{2}$ or 60π.	B1 B1 B1 \downarrow B1 [4] M1 A1* [2]	Use of $r \theta, \theta$ calculated, not 6 or 8 . Use of $1 / 2 r^{2} \theta$ with radians and $r=$ calculated ' 10 ', not 6 or 8 .
$3 y=\frac{2}{\sqrt{5 x-6}}$ (i) $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \times-1 / 2 \times(5 x-6)^{-\frac{3}{2}} \times 5 \\ & \rightarrow-\frac{5}{8}\end{aligned}$ (ii) integral $=\frac{2 \sqrt{5 x-6}}{\frac{1}{2}} \div 5$ Uses 2 to $3 \rightarrow 2.4-1.6=0.8$	B1 B1 B1 [3] B1 B1 M1 A1 [4]	B1 without ' $\times 5$ '. B1 For ' $\times 5$ ' Use of ' $u v$ ' or ' u / v ' ok. B1 without ' $\div 5$ '. B1 for ' $\div 5$ ' Use of limits in an integral.
$4 \overrightarrow{O A}=\mathbf{i}+2 \mathbf{j}$ and $\overrightarrow{O B}=4 \mathbf{i}+p \mathbf{k}$, (i) $\begin{aligned} & \overrightarrow{A B}=\mathbf{b}-\mathbf{a}=\mathbf{3 i}-\mathbf{2} \mathrm{j}+\mathbf{6 k} \\ & \text { Unit vector }=(\mathbf{3 i}-\mathbf{2} \mathrm{j}+\mathbf{6 k}) \div 7 \end{aligned}$ (ii) $\begin{aligned} & \text { Scalar product }=4 \\ & =\sqrt{ } 5 \times \sqrt{ }\left(16+p^{2}\right) \times \cos \theta \\ & \rightarrow p= \pm 8 \end{aligned}$	M1 A1 \downarrow [3] M1 M1 M1 A1 [4]	Must be $\overrightarrow{A B}=\mathbf{b}-\mathbf{a}$ Divides by modulus. $\sqrt{ }$ on vector $A B$. Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ For modulus. All linked correctly including correct use of $\cos \theta=1 / 5$.
$5 \quad A(0,8) B(4,0) 8 y+x=33$ m of $A B=-2$ m of $B C=1 / 2$ Eqn $B C \rightarrow y-0=1 / 2(x-4)$ Sim eqns $\rightarrow C(16,6)$ Vector step method $\rightarrow D(12,14)$ (or $A D y=1 / 2 x+8, C D y=-2 x+38$) (or $M=(8,7) \rightarrow D=(12,14)$)	B1 M1 M1 M1 A1 M1 A1 [7]	Use of $m_{1} m_{2}=-1$ for $B C$ or $A D$ Correct method for equation of $B C$ Sim Eqns for $B C, A C$. M1 valid method.

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2013	9709	12

6 (i) Sim triangles $\frac{y}{16-x}=\frac{12}{16}$ (or trig) $\begin{aligned} & \rightarrow y=12-3 / 4 x \\ & A=x y=12 x-3 / 4 x^{2} . \end{aligned}$ (ii) $\begin{aligned} & \frac{\mathrm{dA}}{\mathrm{dx}}=12-\frac{6 x}{4} \\ & =0 \text { when } x=8 . \rightarrow A=48 . \end{aligned}$ This is a Maximum. From - ve quadratic or 2nd differential.	M1 A1 A1 [3] B1 M1 A1 B1 [4]	Trig, similarity or eqn of line (could also come from eqn of line) $\mathrm{ag}-$ check working. Sets to $0+$ solution. Can be deduced without any working. Allow even if ' 48 ' incorrect.
7 (a) (i) $a=300, d=12$ $\rightarrow 540=300+(n-1) 12 \rightarrow n=21$ (ii) $S_{26}=13(600+25 \times 12)=11700$ $\rightarrow 3$ hours 15 minutes. (b) $a r=48$ and $a r^{2}=32 \rightarrow r=2 / 3$ $\begin{aligned} & \rightarrow a=72 . \\ & S_{\infty}=72 \div 1 / 3=216 . \end{aligned}$	$\begin{array}{ll} \text { M1 } & \text { A1 } \\ & {[2]} \\ \text { M1 } & \\ \text { A1 } & \\ & {[2]} \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1f } & \\ & {[4]} \end{array}$	Use of nth term. Ans 20 gets 0 . Ignore incorrect units Correct use of s_{n} formula. Needs $a r$ and $a r^{2}+$ attempt at a and r. Correct S_{∞} formula with $\|r\|<1$
$8 \mathrm{f}: x \mapsto 3 \cos x-2$ for $0 \leqslant x \leqslant 2 \pi$. (i) $3 \cos x-2=0 \rightarrow \cos x=2 / 3$ $\rightarrow x=0.841$ or 5.44 (ii) range is $-5 \leqslant \mathrm{f}(x) \leqslant 1$ (iii) (iv) max value of $k=\pi$ or 180°. (iv) $\mathrm{g}^{-1}(x)=\cos ^{-1}\left(\frac{x+2}{3}\right)$	$\begin{array}{lll} \text { M1 } & \\ \text { A1 } & \text { A1 } \\ & & {[3]} \\ \text { B2,1 } & \\ & {[2]} \\ \text { B1,B1 } \\ & & {[2]} \\ & & \\ \text { B1 } & \\ & & {[1]} \\ & & \\ \text { M1 } & \\ \text { A1 } & \\ & & {[2]} \end{array}$	Makes cos subject, then $\cos ^{-1}$ \checkmark for $2 \pi-1$ st answer. B1 for $\geqslant-5$. B1 for $\leqslant 1$. B1 starts and ends at same point. Starts decreasing. One cycle only. $B 1$ for shape, not ' V ' or ' U '. Make x the subject, copes with 'cos'. Needs to be in terms of x.

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9709	12

$9 y=\frac{8}{x}+2 x$ (i) $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-8}{x^{2}}+2 \\ & (-6 \text { at } A) \\ & \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} y}{\mathrm{~d} t} \\ & \rightarrow-0.24 \end{aligned}$ (ii) $\begin{aligned} & \int y^{2}=\int \frac{64}{x^{2}}+4 x^{2}+32 \\ & =\left(\frac{-64}{x}+\frac{4 x^{3}}{3}+32 x\right) \end{aligned}$ Limits 2 to 5 used correctly $\rightarrow 271.2 \pi$ or 852 (allow 271π or 851 to 852)	M1 A1 [4] M1 A3,2,1 DM1 A1 [6]	Attempt at differentiation. algebraic - unsimplified. Ignore notation - needs product of 0.04 and 'his' $\frac{\mathrm{d} y}{\mathrm{~d} x}$. Use of integral of y^{2} (ignore π) 3 terms $\rightarrow-1$ each error. Uses correct limits correctly. (omission of π loses last mark)
$10 \mathrm{f}: x \mapsto 2 x^{2}-3 x, \mathrm{~g}: x \mapsto 3 x+k$, (i) $\begin{aligned} & 2 x^{2}-3 x-9>0 \\ & \rightarrow x=3 \text { or }-11 / 2 \\ & \text { Set of } x x>3, \text { or } x<-11 / 2 \end{aligned}$ (ii) $\begin{aligned} & 2 x^{2}-3 x=2\left(x-\frac{3}{4}\right)^{2}-\frac{9}{8} \\ & \operatorname{Vertex}\left(\frac{3}{4},-\frac{9}{8}\right) \end{aligned}$ (iii) $\operatorname{gf}(x)=6 x^{2}-9 x+k=0$ Use of $b^{2}-4 a c \rightarrow k=\frac{27}{8}$ oe.	M1 A1 A1 [3] B3,2,1 B1 \uparrow [4] B1 M1 A1 [3]	For solving quadratic. Ignore $>$ or \geqslant condone \geqslant or \leqslant $-x^{2}$ in bracket is an error. \uparrow on ' c ' and ' b '. Used on a quadratic (even fg).

