Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9709	73

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& Normal with mean 28
\[
\begin{aligned}
\& \text { Var }=0.12^{2} \times 8 \\
\& =0.115(3 \mathrm{sfs})
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& [3] \& \begin{tabular}{l}
Both \\
square \(\& \times\) by 8 or \(s d=0.12 \times \sqrt{ } 8\) or \(\mathrm{sd}=0.339(3 \mathrm{sfs})\) \\
clearly stated var / sd
\end{tabular} \\
\hline Total \& \& \& [3] \& \\
\hline \begin{tabular}{l}
2 (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mu \\
\& \frac{\sigma^{2}}{n} \\
\& \frac{176-177.8}{\frac{6.1}{\sqrt{12}}}(=-1.022) \\
\& \Phi\left({ }^{(}-1.022^{\prime}\right)=1-\Phi\left({ }^{(} 1.022^{\prime}\right) \\
\& =0.153(3 \mathrm{sfs})
\end{aligned}
\] \\
No; \(X\) norm distr'd or pop norm distr'd Or hts norm distr'd Or original dist normal
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
M1 \\
A1 \\
B1
\end{tabular} \& [2]

[3]

[1] \& | (as an expression) |
| :--- |
| (as an expression) |
| SC If B0B0 scored, $\mathrm{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$ scores B1 |
| Standardise with $\sqrt{ } 12$ |
| Accept 'totals' method. No mixed methods. |
| $(2112-2133.6) / \sqrt{ }\left(6.1^{2} \times 12\right)$ |
| Correct area (consistent with working) |
| Need 'No' stated or implied AND correct reason |
| NB ‘No, because small sample’ scores B0 NB 'it is normally distr` d ' scores B0 | \\

\hline Total \& \& \& [6] \& \\

\hline | 3 (i) |
| :--- |
| (ii) | \& | $\begin{aligned} & \left(\frac{5}{6}\right)^{25}+25\left(\frac{5}{6}\right)^{24}\left(\frac{1}{6}\right) \\ & =0.0629 \text { final answer } \end{aligned}$ |
| :--- |
| Sig level $=6.29 \%$ $\begin{aligned} & \operatorname{Var}(p) \approx \frac{0.09 \times 0.91}{100} \\ & (=0.000819) \\ & z=1.96 \\ & 0.09 \pm z \sqrt{\frac{0.09 \times 0.91}{100}} \\ & =0.034 \text { to } 0.146(3 \mathrm{dps}) \end{aligned}$ | \& | M1 |
| :--- |
| A1 |
| B1ft |
| M1 |
| B1 |
| M1 |
| A1 | \& [3]

[4] \& | Allow end errors, but just $\mathrm{P}(2)$ implies M0 Accept p/q mix |
| :--- |
| ft their $\mathrm{P}(X \leq 1)$ with Binomial used. |
| Allow 6.3\% or 6\% |
| For $\mathrm{pq} / 100$ seen (any p / q) (must be probs) |
| For correct form of C.I. (any p/q) (must be probs) | \\

\hline Total \& \& \& [7] \& \\
\hline
\end{tabular}

Page 5 Mark Scheme	Syllabus	Paper	
	GCE A LEVEL - October/November 2012	9709	73

\begin{tabular}{|c|c|c|c|c|}
\hline 4 \& \begin{tabular}{l}
Use of \(X_{1}-2 X_{2}\) or similar
\[
\mathrm{E}\left(X_{1}-2 X_{2}\right)=180-360(=-180)
\]
\[
\operatorname{Var}\left(X_{1}-2 X_{2}\right)=5 \times 1550 \text { or } 7750
\]
\[
\begin{aligned}
\& \frac{0-(-180)}{\sqrt{7750^{\prime}}} \text { or } \frac{0-180}{\sqrt{\prime 7750^{\prime}}} \\
\& (= \pm 2.045) \\
\& 1-\Phi\left({ }^{\prime} 2.045^{\prime}\right) \\
\& =0.0205 \text { or } 0.0204
\end{aligned}
\] \\
Ans 0.041 (2 sf)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
M1 \\
A1 \\
B1ft
\end{tabular} \& [7] \& \begin{tabular}{l}
Or use of \(1 / 2 X_{1}-X_{2}\) \\
\(\mathrm{E}\left(2 X_{1}-X_{2}\right)=360-180(=180)\) \\
Or \(\mathrm{E}\left(1 / 2 X_{1}-X_{2}\right)=90-180=(-90)\) \\
for \(1550+4 \times 1550\) or \(1 / 4 \times 1550+1550\) \\
7750 or 1937.5 \\
Allow incorrect var (dep \(>0 \& \neq 1550\)), no \(\downarrow\) \\
Standardising - no mixed methods \\
Or \(\pm(0--90) / \sqrt{ } 1937.5\) \\
For finding correct area (consistent with working) \\
Allow double their prob
\end{tabular} \\
\hline Total \& \& \& [7] \& \\
\hline 5 (i)

(ii) \& \begin{tabular}{l}
$\operatorname{Est}(\mu)=2.3$ \\
$\operatorname{Est}\left(\sigma^{2}\right)=\frac{200}{199}\left(\frac{1636}{200}-\left(\frac{460}{200}\right)^{2}\right)$ \\
$=2.90(3 \mathrm{sf})$ or 2.91 or $578 / 199$ \\
H_{0} : Pop mean wt loss $=2 \mathrm{~kg}$ \\
H_{1} : Pop mean wt loss $>2 \mathrm{~kg}$
$$
\frac{2.3-2}{\sqrt{\frac{2.9045^{\prime}}{200}}}
$$
$$
=2.489 \text { or } \pm 2.49
$$ \\
or 0.0064 / 0.9936 for area comparison or $x_{\text {crit }}=2.28(03)$ \\
$\operatorname{comp} z=2.326$ \\
Evidence that mean wt loss $>2 \mathrm{~kg}$

 \&

B1 \\
M1 \\
A1 \\
B1 \\
M1 \\
A1 \\
M1 \\
A1ft

 \& [3] \&

Allow $\sqrt{\frac{200}{199}}\left(\frac{1636}{200}-\left(\frac{460}{200}\right)^{2}\right)$ or 1.7043 for M1 Or 1/199 ($1636-460^{2} / 200$) \\
Allow ' μ ' but not just 'mean' \\
$\frac{2.3-2}{\sqrt{\frac{1.7043^{\prime}}{200}}}$ Stand'ise with $\sqrt{ } 200$. Accept sd/var mixes \\
Or $x_{\text {crit }}=2+2.326 \sqrt{ }(2.9045 / 200)$ \\
For valid comparison (z or area or $x_{\text {crit }}$) \\
No contradictions \\
Reject H_{0} / accept H_{1} only if $\mathrm{H}_{0} / \mathrm{H}_{1}$ correctly defined \\
If $\frac{200}{199}$ not used in (i): var $=2.89, \mathrm{sd}=1.7$, $\operatorname{cr} z=2.496$ can score all marks
\end{tabular} \\

\hline Total \& \& \& [8] \& \\
\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9709	73

6 (i)	$\begin{aligned} & \mathrm{f}(x) \geqslant 0 \text { for all } x \text { defined } \\ & \int_{0}^{a} \frac{2}{a^{2}} x \mathrm{~d} x \\ & \left(=\left[\frac{2 x^{2}}{2 a^{2}}\right] \begin{array}{l} a \\ 0 \end{array}\right) \\ & =1 \end{aligned}$	B1 M1 A1	[3]	Attempt $\int \mathrm{f}(x) \mathrm{d} x$ with limits $0, a$. Must be a. Or equivalent methods (e.g. by areas)
(ii)	$\begin{aligned} & \int_{0}^{a} \frac{2}{a^{2}} x^{2} \mathrm{~d} x(=8) \\ & \frac{2}{a^{2}}\left[\frac{x^{3}}{3}\right]_{0}^{a}(=8) \\ & \left(\frac{2 a}{3}=8\right) \\ & a=12 \end{aligned}$	M1 A1 A1	[3]	Attempt $\int x \mathrm{f}(x) \mathrm{d} x$, ignore limits Correct integrand and limits
(iii)	$\begin{aligned} & 1-\int_{0}^{6} \frac{2}{144} x \mathrm{~d} x \text { or } \int_{6}^{12} \frac{2}{144} x \mathrm{~d} x \\ & =1-1-\frac{1}{72}\left[\frac{x^{2}}{2}\right]_{0}^{6} \text { or } \\ & \frac{1}{72}\left[\frac{x^{2}}{2}\right] \begin{array}{l} 12 \\ 6 \\ =\frac{3}{4} \end{array} \end{aligned}$	M1 A1ft A1ft	[3]	Correct expr'n incl limits; ft their ' a ' Correct integrand and limits; ft their ' a ' ft their ' a ', dep $0<$ ans <1
Total			[9]	

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9709	73

7 (i)	$\begin{aligned} & n>50 \\ & n p=0.8, \text { which is }<5 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	[2]	Accept n large Accept p small
(ii)	$\begin{aligned} & \lambda=9.6 \\ & \mathrm{e}^{-9.6}\left(\frac{9.6^{3}}{3!}+\frac{9.6^{4}}{4!}+\frac{9.6^{5}}{5!}\right) \\ & =0.0800(3 \mathrm{sfs}) \end{aligned}$	B1 M1 A1	[3]	Any λ Accept end errors. Allow 0.08
(iii)	H_{0} : Pop mean for 10 days $=8$ H_{1} : Pop mean for 10 days <8 $\begin{aligned} & \mathrm{e}^{-8}\left(1+8+\frac{8^{2}}{2!}\right) \\ & =0.0138 \quad \text { or } 0.0137 \end{aligned}$ Compare 0.02 Evidence that mean number of absentees has decreased	B1 M1 A1 M1 Alft	[5]	or Pop mean for 1 day $=0.8$ Pop mean for 1 day <0.8 Allow λ or μ but not just 'mean' Any λ. Accept end errors. NB P(2) only used scores M0M0 Accept CR method $\mathrm{CR}=0,1,2$ all working must be shown Valid comparison with 0.02 or CR No contradictions Reject H_{0} / accept H_{1} only if $\mathrm{H}_{0} / \mathrm{H}_{1}$ correctly defined
Total			[10]	
	Total for paper		[50]	

