Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9709	71

$\begin{array}{ll} 1 & \left(\frac{m}{2}\right)^{2} \\ & \left(\frac{m}{2}\right)^{2}=\frac{1}{2} \\ & m=\sqrt{2} \text { or } 1.41(3 \mathrm{sfs}) \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$y=\frac{1}{2} x \quad$ (attempt at linear equ with $\mathrm{c}=0$) $\int_{0}^{m}\left(\frac{1}{2} x\right) \mathrm{d} x=\frac{1}{2}$ (Note: $\pm \sqrt{ } 2$ as final answer scores A0)
$2 \mathrm{H}_{0}$: Pop mean $=24.0$ H_{1} : Pop mean >24.0 $\begin{aligned} & \frac{25-24}{\frac{4.8}{\sqrt{150}}} \\ & =2.55(2) \\ & \operatorname{Comp} z=2.054 \text { or } 2.055 \end{aligned}$ Evidence that Hiergro has incr hts	B1 M1 A1 M1 A1ft [5]	Allow ' μ ' but not just 'mean' Standardise, with $\sqrt{ } 150$. Ignore cc. Accept sd/var mixes. OR find $\mathrm{x}_{\text {crit }}$ For correct z or area or $\mathrm{x}_{\text {crit }}$ Valid comparison (z values/areas/ x values) Correct conclusion No contradictions (Note 2 tail test can score B0 M1 A1 M1 $(\mathrm{z}=2.326) \mathrm{A} 1 \mathrm{ft})$
$\begin{array}{ll} 3 \quad \text { (i) } & \begin{array}{l} \text { Mean }=500+3 \times 142 \\ \\ \end{array}=926 \text { (cents) } \\ & \\ & \mathrm{SD}=3 \times 35 \\ & =105 \text { (cents) } \end{array}$	B1 M1 A1 [3]	Or 9×35^{2} seen Accept $\sqrt{ } 11025$
$\text { (ii) } \begin{aligned} & \text { Mean }=6 \times \times 926 '=5556 \text { (cents) } \\ & 6 \times 105^{\prime 2} \\ &(\mathrm{SD}=\sqrt{ } 66150) \\ &= 257 \text { (cents) }(3 \mathrm{sf}) \end{aligned}$	B1ft M1 A1 [3]	or $\mathrm{SD}=\sqrt{6} \times{ }^{\prime} 105$ '. ft their (i) Accept $\sqrt{ } 66150$
4 (i) $\begin{aligned} & \mathrm{P}(X \leqslant 1)=(0.75)^{20}+20(0.75)^{19}(0.25) \\ & =0.0243 \end{aligned}$ $\begin{aligned} & \mathrm{P}(X \leqslant 2)=(0.75)^{20}+20(0.75)^{19}(0.25)+ \\ & =0.0913 \text { or } 0.0912 \mathrm{C}_{2}(0.75)^{18}(0.25)^{2} \\ & = \end{aligned}$ Critical region is 0 or 1 pkt contain gift or <2 pkts contain gift oe	M1 A1 M1 A1 A1 [5]	Attempt correct expression Attempt correct expression OR Find $\mathrm{P}(2)$ $=0.0669 \text { or } 0.0670$ dep M1M1 \& their $\mathrm{P}(X \leqslant 1)<0.05<$ their $\mathrm{P}(X \leqslant 2)$ (S.R. Use of Normal: $\mathrm{N}\left(5.3 .75^{2}\right)$ used B1 $\begin{aligned} & -1.645=(x+0.5-5) / \sqrt{ } 3.75 \mathrm{M} 1 \quad x<1.31 \mathrm{~A} 1 \\ & (3 / 5)) \end{aligned}$
(ii) $\mathrm{P}($ Type I$)=0.0243(3 \mathrm{sfs})$	B1ft [1]	ft their $\mathrm{P}(X \leqslant 1) \mathrm{dep}<0.05 \mathrm{ft}$ Normal
(iii) 2 is outside rej reg No evidence to reject claim	M1 A1ft [2]	or $\mathrm{P}(X \leqslant 2)>0.05$ No contradictions

Page 5 Mark Scheme	Syllabus	Paper	
	GCE A LEVEL - October/November 2012	9709	71

5 (i) $\begin{aligned} & \int_{3}^{5} \frac{k}{x-1} \mathrm{~d} x=1 \\ & {[k \ln (x-1)]_{3}^{5}=1} \\ & k(\ln 4-\ln 2)=1 \\ & k \ln 2=1 \\ & \left(k=\frac{1}{\ln 2} \quad \text { AG }\right) \end{aligned}$	$\begin{array}{lr} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & {[4]} \end{array}$	Attempt integ $\mathrm{f}(x)$ \& ' $=1$ ' ignore limits Correctly integrated; ignore limits Subst of limits 3, 5 No errors seen. No decimals seen
$\text { (ii) } \begin{aligned} & \frac{1}{\ln 2} \int_{3}^{x} \frac{1}{x-1} \mathrm{~d} x=0.75 \\ & \frac{1}{\ln 2}[\ln (x-1)] \frac{x}{3}=0.75 \\ & \frac{1}{\ln 2}(\ln (x-1)-\ln 2)=0.75 \\ & \ln (x-1)=(0.75 \times \ln 2+\ln 2) \\ & \ln (x-1)=1.75 \times \ln 2 \\ & \\ & x-1=2^{1.75} \text { or } x-1=3.36 \\ & x=4.36(3 \text { sfs }) \end{aligned}$	A1 M1 dep* A1 [4]	Attempt integ $\mathrm{f}(x)$, unknown limit, \& ' $=0.75$ 'or ' $=0.25$, oe. Fully correct equn after subst limits oe. Correct manipulation of logs to find x
6 (i) Excludes children Excludes people without phones More than one person in some houses Some ex-directory	B1 [1]	or other implying directory excludes some people
$\text { (ii) } \begin{aligned} & \operatorname{Var}(p)=\frac{\frac{38}{200}\left(1-\frac{38}{200}\right)}{200}(=0.0007695) \\ & z=2.576 \\ & \frac{38}{200} \pm z \sqrt{\frac{\frac{38}{200}\left(1-\frac{38}{200}\right)}{200}} \\ & 0.119 \text { to } 0.261(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Seen For correct form of CI Accept 0.262 Must be an interval
	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \end{aligned}$	$z \times($ their sd of $p)=0.05$. Allow $=0.1$ Attempt $\Phi($ their $z)$ and find $2 \Phi-1$
$\begin{array}{ll} 7 \text { (i) } \quad & \lambda=4.8 \\ & \mathrm{E}^{-4.8}\left(1+4.8+\frac{4.2^{2}}{2!}+\frac{4.8^{3}}{3!}\right) \\ & =0.294(3 \mathrm{sfs}) \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\mathrm{P}(R=0,1,2$ or 3$)$, their λ allow one end error

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9709	71

$\text { (ii) } \begin{array}{ll} e^{-\lambda} \times \frac{\lambda^{4}}{4!}=\frac{16}{3} e^{-\lambda} \times \frac{\lambda^{2}}{2!} & \text { or without } e^{-\lambda} \\ \frac{\lambda^{2}}{12}=\frac{16}{3} & \text { or better } \\ (\lambda=8) & \\ \lambda=1.6 n \text { seen or implied } & \\ n='^{\prime} \div 1.6 & \\ =5 & \end{array}$	M1 A1 B1 A1 [4]	$\begin{array}{lr} \lambda=1.6 n \text { seen or implied } & \text { B1 } \\ e^{-1.6 n} \times \frac{(1.6 n)^{4}}{4!}=\frac{16}{3} e^{1.6 n} \times \frac{(1.6 n)^{2}}{2!} & \text { M1 } \\ \frac{(1.6 n)^{2}}{12}=\frac{16}{3} \text { or better } & \text { A1 } \\ (1.6 n=8) & \\ n=5 & \text { A1 } \end{array}$
$\begin{array}{rlr} \text { (iii) } \begin{aligned} T \sim \mathrm{~N}(64,64) & \\ & \frac{75.5-64}{\sqrt{64}} \end{aligned} & (=1.4375) \\ & 1-\Phi\left({ }^{‘} 1.4375{ }^{\prime}\right) & (=1-0.9247) \\ & =0.0753 \text { to } 0.0754 & \end{array}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } \\ \text { M1 } & \\ \text { A1 } \end{array}$	May be implied Allow with wrong or no cc. No sd/var mixes Finding correct area consistent with their working

