Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	$\mathbf{6 3}$

1 $\begin{aligned} & \mathrm{z}=-1.036=\frac{5.6-93}{\sigma} \\ & \sigma=3.57 \end{aligned}$	B1 M1 A1	\pm (1.036 to 1.037) seen Equation with 5.6 or $13.0,9.3, \sigma$ and a z value, no cc Correct final answer
$2 \begin{aligned} & -3 p+2 r+4 \times 0.4=2.3 \\ & (-3)^{2} p+2^{2} r+4^{2} \times 0.4-2.3^{2}=3.01 \\ & p+q+r+0.4=1 \\ & -3 p+2 r=0.7 \\ & \\ & 9 p+4 r=1.9 \\ & \\ & \text { so }-9 p+6 r=2.1 \text { or }-6 p+4 r=1.4 \\ & \\ & 4 r+6 r=1.9+2.1 \text { or } 9 p+6 p=1.9-1.4 \\ & \\ & \\ & r=\frac{2}{5}(0.4), p=\frac{1}{30}(0.0333) \\ & \\ & \\ & \\ & q=0.6-0.4-0.0333=\frac{1}{6}(0.167) \end{aligned}$	B1 B1 B1 M1 A1 A1	Correct unsimplified equation, oe Correct unsimplified equation, oe Correct equation, oe Obtain an equation in 1 unknown One correct answer Remaining two answers correct
3 (i) $\frac{74}{170}\left(\frac{37}{85}\right)(0.435)$	B1	Correct answer
(ii) $\frac{38}{96}\left(\frac{19}{49}\right)(0.396)$	B1 B1 $1 \quad 2$	Correct unsimplified numerator or denominator Correct answer
(iii) $\mathrm{P}($ high GDP and high birth rate $)=0$ So they are exclusive	$\begin{aligned} & \text { B1* } \\ & \text { B1dep* } 2 \end{aligned}$	Correct reason Correct answer, CWO
$\text { (iv) } \begin{aligned} & \frac{42}{74} \times \frac{41}{54} \\ & =\frac{1722}{3996}\left(\frac{287}{666}\right)(0.431) \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ & \\ \text { B1 } & \\ \text { A1 } & \mathbf{3} \end{array}$	Multiplying 2 probabilities with different numerators and denominators, only One correct probability seen Correct answer
$\begin{aligned} & \hline 4 \text { (i) }(3 \times 59+8 \times 67+15.5 \times 38+25.5 \times \\ &18+40.5 \times 11) / 193 \\ &=11.4 \\ & \sigma^{2}=\left(3^{2} \times 59+8^{2} \times 67+\ldots .\right) / 193- \\ &(11.43 . .)^{2} \\ & \\ & \sigma=9.78 \text { or } 9.79 \\ & \hline \end{aligned}$	M1 A1 M1 A1 4	Attempt to calculate the mean using midpoints not ends, with frequencies, can be implied Correct mean Using $\Sigma x^{2} f$ with mean ${ }^{2}$ subtracted numerically, can be implied Correct answer, method marks can be implied

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	$\mathbf{6 3}$

	Mark Scheme		
Page 6	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	$\mathbf{6 3}$

(b)
(i) ends in 2,6 or $8: 6!/ 2!(=360)$ ways
ends in 4: $6!(=720)$ ways
Total $=3 \times 360+720$

$$
=1800 \text { ways }
$$

OR_{1} all: $7!/ 2!(=2520)$ ways ends in 1 or $7: 6!/ 2!(=360)$ ways Total $=2520-2 \times 360$

$$
=1800
$$

$\mathrm{OR}_{2}\left(4_{\mathrm{A}}, 4_{\mathrm{B}}\right)$ final digit: 5 ways other digits: 6 ! ways and \div by 2 ! Total $=5 \times 360$

$$
=1800
$$

(ii) $5 \times 4 \times 3 \times 2$ or ${ }_{5} \mathrm{P}_{4}$ or ${ }_{5} \mathrm{C}_{4} \times 4$! or 5 ! or ${ }_{5} \mathrm{P}_{5}$ or ${ }_{6} \mathrm{P}_{5} \div 6$

$$
=120 \text { ways }
$$

(c) $\left(\frac{2}{3}\right)^{7}$
$=\frac{128}{2187}(0.0585)$

