Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9709	62

\begin{tabular}{|c|c|c|c|}
\hline 1 (i) \(\mathrm{P}(A\) Later \()=0.5 \times 0.2=0.1\) \& B1 \& [1] \& \\
\hline \[
\text { (ii) } \begin{aligned}
\& \mathrm{P}(L \text { given } I)=(0.2 \times 0.1) /(0.5 \times 0.8+0.3 \times \\
\&0.6+0.2 \times 0.1) \\
\&= 0.02 / 0.6 \\
\&= 0.0333(1 / 30)
\end{aligned}
\] \& B1
M1
A1
A1 \& [4] \& \begin{tabular}{l}
\(0.2 \times 0.1\) seen on its own as num or denom of a fraction \\
Attempt at \(\mathrm{P}(I)\) summing 2 or 32 factor prods, seen anywhere Correct unsimplified \(\mathrm{P}(\mathrm{I})\) as num or denom of a fraction Correct answer accept 0.033
\end{tabular} \\
\hline 2 (i)
\[
\begin{aligned}
\& z_{1}=\frac{12-6.4}{5.2}=1.077 \\
\& z_{2}=\frac{10-6.4}{5.2}=0.692 \\
\& \Phi\left(\mathrm{z}_{1}\right)-\Phi\left(\mathrm{z}_{2}\right)=0.8593-0.7556 \\
\& =0.104
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \& [3] \& \begin{tabular}{l}
Standardising, can be all in thousands, no mix, no cc no sq rt no sq
\[
\Phi_{2}-\Phi_{1}, \Phi_{2} \text { must be }>\Phi_{1}
\] \\
Correct answer
\end{tabular} \\
\hline (ii)
\[
\begin{aligned}
\mathrm{P}(\text { loss }) \& =\mathrm{P}\left(z<\frac{0-6.4}{5.2}\right)=\mathrm{P}(\mathrm{z}<-1.231) \\
\& =1-0.8909 \\
\& =0.109 \\
\mathrm{P}(1) \& =(0.1091)^{1}(0.8909)^{3} \times 4 \mathrm{C} 1 \\
\& =0.309 \text { or } 0.308
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& [4] \& \begin{tabular}{l}
Standardising using \(x=0\), accept
\[
\frac{0.5-6.4}{5.2}
\] \\
Correct prob \\
Binomial term \({ }_{4} \mathrm{C}_{x} p^{x}(1-p)^{4-x}\) any \(p x \neq\) 0 \\
Correct answer
\end{tabular} \\
\hline 3 (i) median in 15-20 mins, UQ in 25-40 mins \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& [2] \& \\
\hline \& M1
A1
B1

B1 \& [4] \& | Attempt at fd or scaled freq [f/(attempt at cw)] |
| :--- |
| Correct heights seen on diagram |
| Correct bar widths visually no gaps |
| Labels (time/mins and fd or freq per 5 min) and correct bar ends | \\

\hline
\end{tabular}

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2012	9709	62

$\text { (iii) } \begin{aligned} & 5 \times 19+12.5 \times 12+17.5 \times 28+22.5 \times 22 \\ + & 32.5 \times 18+50 \times 13) / 112=2465 / 112 \\ = & 22.0 \text { minutes } \end{aligned}$	M1 A1	[2]	Attempt at $\Sigma x f / 112$ using mid-points, NOT classwidths, NOT upper class bounds Correct answer accept 22
$4 \text { (i) } \begin{aligned} \mathrm{z} & =1.036 \text { or } 1.037 \\ 1.036 & =\frac{5-4 s}{s} \\ s & =0.993 \\ \mu & =3.97 \end{aligned}$	B1 B1 M1 A1	[4]	$\begin{aligned} & \pm 1.036 \text { or } \pm 1.037 \text { seen } \\ & \frac{5-4 \sigma}{\sigma} \text { seen or } \frac{5-\mu}{\mu / 4} \text { oe } \end{aligned}$ One variable and sensible solving attempt z -value not nec Both answers correct
$\text { (ii) } \begin{aligned} \mathrm{p} & =0.85 \\ \mu & =200 \times 0.85=170, \\ & \mathrm{var}=200 \times 0.85 \times 0.15=25.5 \\ & \mathrm{P}(\text { at least } 160)={ }_{P}\left(z>\frac{159.5-170}{\sqrt{25.5}}\right) \\ & =\mathrm{P}(\mathrm{z}>-2.079) \\ & =0.981 \end{aligned}$	B1 M1 M1 M1 A1	[5]	$200 \times 0.85(170)$ and $200 \times 0.85 \times$ 0.15 (25.5) seen Standardising, sq rt and must have used 200 continuity correction 159.5 or 160.5 correct area (>0.5) must have used 200 correct value
5(a) Boys in: $10 \mathrm{C} 1 \times 9 \mathrm{C} 3=840$ ways Boys out: $10 \mathrm{C} 3 \times 9 \mathrm{C} 3=10080$ ways Total $=10920$ ways (10900)	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	[3]	summing two 2 -factor products, C or P Any correct option unsimplified Correct final answer
(b)(i) ${ }_{12} \mathrm{P}_{8}=19,958,400$	B1	[1]	or 20,000,000
(ii) together: ${ }_{11} \mathrm{P}_{7}=1663200 \times 2=3326400$ Not tog: 19958400-3326400 $=16,632,000(16,600,000)$ OR M at end then not F in $10 \times 10 \mathrm{P} 6 \times$ $2=3024000$ ways not at end in $10 \times 9 \times 10 \mathrm{P} 6=13608000$ ways Total $=16,632,000$ ways	B1 M1 A1 M1 B1 A1	[3]	${ }_{11} \mathrm{P}_{7}$ seen 19958400 or their (i) - their together (must be >0) correct final answer summing options for M at end and M not at end one correct option correct final answer
(iii) 8 ! $\times 5=201600$ ways	B1 M1 A1	[3]	8 ! seen mult by equivalent of integer \geq 1 Mult by 5 Correct answer SR $8!\times 5!=4838400$ B2

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9709	62

$6 \quad$ (i) $\begin{aligned} & P(9)=P(1,4,4) \times 3+P(2,3,4) \times 6+P(3,3,3) \\ & =10 / 64(5 / 32)(0.156) \mathrm{AG} \end{aligned}$	M1 M1 A1	[3]	Listing at least 2 different options Multiplying $\mathrm{P}(4,3,2)$ by 6 or $\mathrm{P}(1,4,4)$ by 3 Correct answer must see numerical justification
(ii) probs $1 / 64,3 / 64,6 / 64,10 / 64,12 / 64$, $12 / 64,10 / 64,6 / 64,3 / 64,1 / 64$.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	[3]	3 or more additional correct probs 5 or more correct All correct
(iii) $\mathrm{P}(S)=6 / 64(3 / 32)$ $\mathrm{P}(R \cap S)=3 / 64, \neq 15 / 1024 \text { ie } \mathrm{P}(R) \times \mathrm{P}(S)$ OR $P(R \mid S)=\frac{3 / 64}{6 / 64}=1 / 2, \neq 10 / 64$ ie $\mathrm{P}(R)$ Not independent	M1 A1 B1 M1 A1ft	[5]	An attempt at $\mathrm{P}(S) 4,4,1$ or $4,2,2$ Correct $\mathrm{P}(S)$ Correct $\mathrm{P}(R \cap S)$ in either intersection or cond prob cases comparing their $\mathrm{P}(R \cap S)$ with their $\mathrm{P}(R) \times \mathrm{P}(S)$ or their $P(R \mid S)$ with their $\mathrm{P}(R)$ need numerical vals correct conclusion ft wrong $\mathrm{P}(S)$ or $\mathrm{P}(R \cap S)$ only

