Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9709	53

1 (i)	$\begin{aligned} & (12+8) O \mathrm{G}= \\ & \pm[8 \times 0.6 /(\pi / 2)-12 \times(2 \times \\ & 0.6) /(3 \pi / 2)] \\ & O \mathrm{G}=0 \mathrm{~m} \end{aligned}$	M1 A1 A1	[3]	Table of values or equates moments Signs either way round
(ii)	$\begin{aligned} & (12+8) \times 0.6 \sin 30=F(0.6+0.6 \cos 30) \\ & F=5.36 \end{aligned}$	M1 A1 A1	[3]	Moments about A
2 (i)	$\begin{aligned} & {\left[60 \times 2^{2} /(2 \times 2)\right]+0.6 v^{2} / 2=} \\ & 0.6 g(6-2 \times 2)+\left[60 \times 2^{2} /(2 \times 2)\right] \\ & v=6.32 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	PE/KE(/EE) balance (EE terms may be omitted or wrong but equal) $(v=\sqrt{40})$
(ii)	$60 e / 2=60(2-e) / 2 \pm 0.6 g$ Upper ext $=1.1$, Lower ext $=0.9$ Distance from $A=3.1 \mathrm{~m}$ $\begin{aligned} & 0.6 \mathrm{~g} \times 1.1+60\left(2^{2}-0.9^{2}\right) / 4 \\ & =60 \times 1.1^{2} / 4+\mathrm{KE} \\ & \mathrm{KE}=36.3 \mathrm{~J} \end{aligned}$ OR $\begin{aligned} & \mathrm{KE}-0.6(6.32)^{2} / 2=60 \times 2^{2} / 4 \\ & -60 \times 1.1^{2} / 4-60 \times 0.9^{2} / 4-0.6 g \times 0.9 \\ & \mathrm{KE}=36.3 \mathrm{~J} \end{aligned}$	M1 A1 A1 M1 A1 \downarrow A1 M1 A1ft A1	[6]	Attempt to find equilibrium position Energy balance, descent from $A . \checkmark \mathrm{cv}$ upper and lower ext Energy balance, descent from $A . \checkmark \mathrm{cv}$ upper and lower ext, answer (i)

Page 5 Mark Scheme	Syllabus	Paper	
	GCE A LEVEL - October/November 2012	9709	53

3 (i)	$t=2 /(25 \cos 70)(=0.234)$ $y=(25 \sin 70) \times 0.234-g \times 0.234^{2} / 2$ $y=5.22$ OR $y=x \tan 70-g x^{2} / 2(25 \cos 70)^{2}$ $y=2 \tan 70-g 2^{2} / 2(25 \cos 70)^{2}$ $y=5.22$	M1		

9709 w12 ms 53

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9709	53

5 (i)	(a) $\mathrm{T} \cos 60=7 \cos 60-0.2 g$ $\mathrm{T}=3 \mathrm{~N}$	M1 A1	[2]	Resolves vertically for B
	(b)	M1		Newton's Second Law with 2 forces resolved horizontally
	$\begin{aligned} & 7 \sin 60+3 \sin 60=0.2 v^{2} / 0.6 \\ & v=5.1(0) \mathrm{ms}^{-1} \end{aligned}$	$\begin{array}{\|l} \mathrm{A} 1 \checkmark \\ \mathrm{~A} 1 \end{array}$	[3]	$\checkmark \mathrm{cv}(3)$
(ii)	$\begin{aligned} & \mathrm{T}_{P} \cos 60-\mathrm{T}_{Q} \cos 60=0.2 \mathrm{~g} \\ & \mathrm{~T}_{P} \sin 60+\mathrm{T}_{Q} \sin 60=0.2 \times 7^{2} \times 0.6 \\ & \mathrm{~T}_{P}-\mathrm{T}_{Q}=4 \text { and } \mathrm{T}_{P}+\mathrm{T}_{Q}=6.78(96 . .) \\ & \mathrm{T}_{Q}=1.39 \mathrm{~N} \end{aligned}$	B1 B1 M1 A1	[4]	Resolves vertically for B or RHS $=0.2 \mathrm{x}(7 \times 0.5)^{2} / 0.5$ Solves 2 SE for T_{Q}
6 (i)	$\begin{aligned} & 0.4 \mathrm{~d} v / \mathrm{d} t=\mathrm{T}-0.4 g \times 0.5-0.9 v \\ & 0.2 \mathrm{~d} v / \mathrm{d} t=0.2 g-\mathrm{T}-0.9 v \\ & 0.6 \mathrm{~d} v / \mathrm{d} t=0.2 g-0.4 g \times 0.5-1.8 \mathrm{v} \\ & \mathrm{~d} v / \mathrm{d} t=-3 v \quad \mathrm{AG} \end{aligned}$	B1 B1 M1 A1	[4]	Not awarded for N2L round corner Not awarded for N2L round corner Awarded for N2L round corner
(ii)	$\begin{aligned} & \int \mathrm{d} v / v=\int-3 \mathrm{~d} t \\ & \ln v=-3 t(+c) \\ & c=\ln 5 \\ & \mathrm{t}=0.231 \\ & \int \mathrm{~d} x=\int \mathrm{e}^{c-3 t} \mathrm{~d} t \\ & x=-\left[\mathrm{e}^{c-3 t}\right]_{0}^{0.231} / 3 \\ & x=0.833 \mathrm{~m} \end{aligned}$ OR $\begin{aligned} & v \mathrm{~d} v / \mathrm{d} x=-3 v, \mathrm{~d} v / \mathrm{d} x=-3 \\ & \int \mathrm{dv}=\int-3 d x \\ & {[v]_{5}^{2.5}=[-3 x]_{0}^{x}} \\ & x=0.833 \mathrm{~m} \end{aligned}$	M1 A1 B1 A1 M1 A1 A1 M1 A1 A1	[7]	Separates variables, integrates Accurare integrals Or $[\operatorname{lnv}]_{5}^{2.5}=[-3 \mathrm{t}]_{0}^{t}$ implied $(\ln 2) / 3$ Attempts integration of $\mathrm{v}(\mathrm{t})$ Correct integral and limits 5/6 m Attempts integration Correct integral and limits Accept 5/6m

