Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	51

$1 \quad O \mathrm{G}=0.25 \sin (\pi / 2) /(\pi / 2)$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } \downarrow & {[3]} \end{array}$	$0.159 \text { (15..) }$ $\sqrt{ } 2.4 \times \mathrm{cv}(\mathrm{OG})$
2 (i) $\begin{aligned} & 6 \times 0.4 \cos 60=0.8 P \cos 45 \\ & P=2.12 \mathrm{~N} \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 & \\ \mathrm{~A} 1 & \\ \mathrm{~A} 1 & {[3]} \end{array}$	Takes moments about B P is the force at A
$\text { (ii) } \begin{aligned} F & =P \sin 75(F \text { is friction force at } B) \\ R & =6+P \cos 75(R \text { is normal reaction at } B) \\ \mu & =(2.12 \sin 75) /(6+2.12 \cos 75) \\ \mu & =0.313 \end{aligned}$	B1 B1 M1 A1 $[4]$	Must use correct angle ($\cos 15$) Must use correct angle ($\sin 15$)
3 (i) $0.2 \mathrm{~d} v / \mathrm{d} t=0.2 g-0.8 v$ $a=(\mathrm{d} v / \mathrm{d} t=) 10-4 v$	$\left\|\begin{array}{ll} \text { M1 } & \\ \text { A1 } & {[2]} \end{array}\right\|$	Use Newton's Second Law, - sign essential
	M 1 A 1 M 1 A1 A1	Separates variables and attempts to integrate Attempts to find the constant or uses the correct limits
$4 R \cos 45-T \cos 45=m g$ $\begin{aligned} & R \cos 45=m g+m g \cos 45 \\ & R \sin 45+T \sin 45=m \omega^{2} \times 0.67 \end{aligned}$ $\begin{aligned} & m g+m g \cos 45+m g \sin 45=m \omega^{2} \times 0.67 \\ & \omega=6(.00) \mathrm{rads}^{-1} \end{aligned}$	M1 A1 M1 M1 A1 A1	Resolves vertically for P May be implied for later work Uses Newton's Second Law horizontally for P Obtaining an equation in m (and g)

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9709	51

OR 4 $\begin{aligned} & \text { Acceleration }=\omega^{2} \times 0.67 \cos 45 \\ & m \omega^{2} \times 0.67 \cos 45=T+m g \cos 45 \\ & m \omega^{2} \times 0.67 \cos 45=m g+m g \cos 45 \\ & \omega=6(.00) \mathrm{rads}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Resolves radial acceleration parallel to the slope for P May be implied by later work Uses Newton's Second Law parallel to the slope for P Obtaining an equation in m (and g)
$\begin{aligned} 5 \quad \text { (i) } \quad v^{2} & =17^{2}-(30 \cos 60)^{2} \\ v & =-8 \end{aligned}$	$\begin{array}{\|ll} \mathrm{M} 1 & \\ \text { A1 } & {[2]} \end{array}$	Finds vertical speed - may be implied by later work
$\text { (ii) } \begin{aligned} &-8=30 \sin 60-g t \\ & t=3.4 \\ & y=\left[(30 \sin 60)^{2}-8^{2}\right] /(2 g)(=30.55) \\ & O P^{2}=(30 \cos 60 \times 3.4)^{2}+30.55^{2} \\ & O P=59.4 \mathrm{~m} \end{aligned}$	M1 A1 B1 M1 A1 [5]	Finds relevant time 3.398 Or $y=(30 \sin 60) \times 3.4-\operatorname{g~3.4} / 2(=30.53)$ Use of Pythagoras Accept 59.5
6 (i) Height of triangle $=0.36 / 0.3(=1.2 \mathrm{~m})$ Semi-circle C of M $=2 \times 0.6 /(3 \pi / 2)$ $\begin{aligned} & 0.36 \times(1.2 / 3)=\pi \times 0.6^{2} / 2 \times 2 \times 0.6 /(3 \pi / 2) \\ & 0.144=0.144 \end{aligned}$ OR $\begin{aligned} & 0.36 \times(1.2 / 3)-\pi \times 0.6^{2} / 2 \times 2 \times 0.6 /(3 \pi / 2) \\ & =\text { distance } \times \text { total area } \\ & \text { Distance }=0 \end{aligned}$	B1 B1 M1 A1 [4] M1 A1	Centre of mass lamina from $B O D$ Equating moments idea Evidence of checking equality Table of moments idea
$\text { (ii) } \begin{aligned} & 0.36 \times 0.3 \\ = & \left(0.36+\pi 0.6^{2} / 2\right) \times O \mathrm{G} \\ & O \mathrm{G}=0.117 \mathrm{~m} \end{aligned}$	A1 A1 A1 [4]	Correct sum of parts Correct moment of whole

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9709	51

