	Page 4		Mark	Scheme				Svllabu	s	
			GCE AS/A LEVEL - 0	October/No	vember	⁻ 201	2	9709	_	42
1					M1		For us	ing WD =	Fdcos	α
	$WD = 45 \times 25 \cos 14^{\circ}$				A1			e		
	Work d	lone is	1090 J (1.09 kJ)		A1	3				
2	(i) $[0.6 = 0 + 0.3a]$				M1		For us	ing $v = 0 +$	at	
		Accel	eration is 2 ms ⁻²		A1	2				
	(ii)	[<i>m</i> g – = 2(1	T = 2m, T - (1 - m)g - m)]		M1		For ap or to B	plying Nev 3	vton's	2 nd law to A
		[m = 7]or T = 8n	$\Gamma/8 \Rightarrow T - (10 - 1.25T) = 2$ $m \Rightarrow 8m - (10 - 10m) = 2 - 10m$	– 0.25T 2 <i>m</i>]	M1		For eli	iminating o	or eval	uating <i>m</i>
		T + 1 or m = 0	.25T + 0.25T = 10 + 2 .6 and T = 8m		A1					
		m = 0	.6 and tension is 4.8 N		A1	4				
			Alt	ternative for	part (ii)					
		[{ <i>m</i> +	$(1-m)$ } × 2 = { $m - (1-m)$)} × g]	M1		For us	$ing(m_A + n_A)$	n _B)a =	$=(m_{\rm A}-m_{\rm B}){ m g}$
		m=0	.6		A1					
		[<i>m</i> g –	T = 2m or T - (1 - m)g = 2((1-m)]	M1		For ap or to E solvin	plying Nev 3, substituti g for T	vton's ing for	2^{nd} law to A m and
		Tensio	on is 4.8 N		A1					

	Davia	5 Mark Sahama			<u>9709 w12 ms 42</u>
	Page	5 Mark Scheme	Syllabus Paper		
		GCE AS/A LEVEL – October/N	lovemb	er 20	12 9709 42
					E
3			M1		For using $s = ut + \frac{1}{2} at^2$ for AB or AC
	55 = 5	5u + 12.5a	A1		
	(55 + 65 = 5)	(65) = 10 u + 50a or $(5v_B + 12.5a \text{ and } v_B = u + 5a)$	A1		
			M1		For solving for <i>a</i> or <i>u</i>
	a = 0.4	4 (or $u = 10$)	A1		
	<i>u</i> = 10	0 (or a = 0.4)	A1ft	6	
		Alternat	ive		
	$v_{\rm B} = (2$	$55 + 65) \div (5 + 5)$	M1		For calculating the speed at B as the mean speed for the motion from A to
	$v_{\rm p} = 1$	2ms ⁻¹			С.
	$v_{\rm B} - 1$	loulating the encoded V where V is the point	Π		
	where as 55	the car passes 2.5 s after passing through A, $\div 5 = 11 \text{ms}^{-1}$	B1		
	[<i>a</i> = ($12 - 11) \div 2.5$]	M1		For using $a = (v_{\rm B} - v_{\rm X}) \div 2.5$
	<i>a</i> = 0.4				
	$u = v_{\rm X}$	$-a \times 2.5 = 11 - 0.4 \times 2.5 = 10$	B1		
4	(i)	$[Y_1^2 = 68^2 - (-60)^2, Y_3^2 = 100^2 - 96^2.$ Y_1 = 68sin 28.1°, Y_3 = 100sin16.3°]	M1		For using $Y^2 = F^2 - X^2$ or for finding the angles (say α and β) between the forces of magnitudes 68 and 100, respectively, and the <i>x</i> -axis. Then find the two relevant magnitudes from 68sin α and 100sin β
		For correct magnitudes (32, 75, 28)	A1		Can be scored by implication if the final A1 is scored for the correct answer to part (i)
		Components are -32, 75 and -28	Alft	3	
	(ii)	$[R^{2}=(-60+0+96)^{2}+(-32+75-28)^{2}]$	M1		For using $R^2 = X^2 + Y^2$
		Magnitude is 39 N	A1		
		$\begin{bmatrix} \theta = \tan^{-1} \{ (-32 + 75 - 28) \div (-60 + 0 + 96) \} \end{bmatrix}$	M1		For using $\theta = \tan^{-1} (Y/X)$
		Direction is 22.6° (or 0.395 rad ^c) anticlockwise from +ve <i>x</i> -axis.	A1	4	Accept just '22.6 from <i>x</i> -axis' or just ' $\theta = 22.6$ '

						970) <u>9 w12 ms 4</u> 2
Page 6		6	Mark Schem	Syllabus	Paper		
			GCE AS/A LEVEL – Octobe	r/Novembe	r 20	9709	42
5	(i)	Acce	leration for $t < 0.8$ is 4/0.8	B1			
		$[5 = 10\sin\theta]$		M1		For using $a = g \sin \theta$	
		$\theta = 3$	A1	3			
			Alternative	e for part (i)			
	(i)	$[mgh = \frac{1}{2} m4^2 \text{ and } s = \{(0+4) \div 2\} \times 0.8$] M1		For using PE loss = = $(u + v) \div 2$ (A to B	KE gain and $s \div t$
		sin0 =	= 0.8/1.6	A1			
		$\theta = 3$	0°	A1			
	(ii)	Acceleration for $0.8 < t < 4.8$ is					
		-4/(4	.8-0.8)	B1			
		[mgs]	$n30^\circ - F = m(-1)]$	M1		For using Newton's	second law
				M1		For using $\mu = F / R$	2
		$\mu = -\frac{1}{2}$	$\frac{ng\sin 30^\circ + m}{mg\cos 30^\circ}$	A1ft		ft following a wrong part (i)	g answer for θ in
		Coef	ficient is 0.693	A1	5	Accept 0.69	

				<u>9709_w12_ms_4</u> 2						
Page		7	Mark Scheme	Syllabus	Paper					
			GCE AS/A LEVEL – October/N	ovembe	er 20 ⁻	12	9709	42		
6	(i)	For u					using DF = $30000/v$			
		[3000 1250a	250a]			For u	using Newton's 2	2 nd law		
		v _{bottor}	$a = 30000/(1250 \times 4 + 1000 + 750)$	M1						
		$v_{top} =$	30000/(1250 × 0.2 + 1000 + 750)	A1						
		[½ 1	$250(15^2 - 4.44^2)]$	M1		For using KE gain = $\frac{1}{2} m(v_{top}^2 - v_{bottom}^2)$				
		Incre	ase in KE is 128000 J (128 kJ)	A1	5					
			Alternative fo	r part (i)						
	(i)	[F –	$1000 - 1250g \times 30/500 = 1250a$]	M1		For u to fir botto	using Newton's s nd the driving fo om and the top	second law rce at the		
		F _{bottor} F _{top} =	$n = 1250 \times 4 + 1000 + 750 = 6750$ and = $1250 \times 0.2 + 1000 + 750 = 2000$	A1						
		[V _{botto}	$v_{\rm top} = 30000/6750$ and $v_{\rm top} = 30000/2000$]	M1		For $\mathfrak{u}_{\mathrm{botton}}$	using DF = 3000 m and v_{top}	0/v to find		
		[½ 1	$250(15^2 - 4.44^2)]$	M1		For u ½ m	using KE gain = $(v_{top}^2 - v_{bottom}^2)$			
		Incre	ase in KE is 128000 J (128 kJ)	A1						
	(ii) PE		$\sin = 1250g \times 30$ and							
		WD a	against resistance = 1000×500	B1						
		[WD _o	ar = 128000 + 375000 + 500000]	M1		For u KE g resist	using WD by car gain + PE gain + tance	's engine = WD against		
		Work	t done is 1000 000 J (1000 kJ)	A1ft	3	ft inc	correct answer in	(i)		
<u>Spec</u> law.	cial Ruli (Max 3	<u>ng</u> appl out of	ying to part (i) for candidates who omit 5)	the weig	ht cor	nponei	nt in applying No	ewton's second		
	(i)	v_{bottom} $v_{top} =$	$= 30000/(1250 \times 4 + 1000)$ and $30000/(1250 \times 0.2 + 1000)$	B1						
		[½ 1	$250(24^2-5^2)]$	M1		For u ½ m(using KE gain = $(v_{top}^2 - v_{bottom}^2)$			
		Incre	ase in KE is 344000 J (344 kJ)	A1						

						<u>9709_w12_m</u>	<u>s 42</u>		
	Page 8		Mark S	Syllabus Paper	. —				
			GCE AS/A LEVEL – O	ctober/November	201	12 9709 42			
7	(i)	$\mathrm{d}v/\mathrm{d}t = k(120t - 3t^2)$		B1					
		[v(40)	$) = k(60 \times 40^2 - 40^3) = 6.4]$	M1		For finding v_{max} as the value of v when $dv/dt = 0$ and $t \neq 0$ and equating with 6.4			
		k = 0.	0002	A1	3	AG			
	(ii)	t = 60) at A	B1					
				M1		For integrating $v(t)$ to find $s(t)$			
		s(t) =	$0.0002(20t^3 - t^4/4) (+C)$	A1					
		[<i>OA</i> =	$= 0.0002 \times (20 \times 60^3 - 60^4/4)]$	M1		For using limits 0 to 60 or evaluate $s(t)$ when $t = 60$ with $C = 0$ (whith may be implied by its absence)	ating ch		
		Dista	nce is 216 m	A1	5				
	(iii)	$[dv/dt = 0.0002(120 \times 60 - 3 \times 60)]$)] M1		For evaluating dv/dt when $t = 60$)		
		Magn	itude of acceleration is 0.72 n	ns ⁻² A1	2	Accept $a = -0.72 \text{ ms}^{-2}$			
	(iv)	$[20t3 - 0.25 t4 = 0,v = 0.0002(60 \times 802 - 803)]$		M1		For attempting to solve $s(t) = 0$ for non-zero <i>t</i> and substituting into <i>v</i>	or v(<i>t</i>).		
		Speed	1 is 25.6 ms ⁻¹	A1	2				