Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

1			M1		For using WD $=\mathrm{Fdcos} \alpha$
	$\mathrm{WD}=45 \times 25 \cos 14^{\circ}$		A1		
	Work done is $1090 \mathrm{~J}(1.09 \mathrm{~kJ})$		A1	3	
2	(i)	[0.6 $=0+0.3 \mathrm{a}$]	M1		For using $\mathrm{v}=0+\mathrm{at}$
		Acceleration is $2 \mathrm{~ms}^{-2}$	A1	2	
	(ii)	$\begin{aligned} & {[m \mathrm{~g}-\mathrm{T}=2 m, \mathrm{~T}-(1-m) \mathrm{g}} \\ & =2(1-m)] \end{aligned}$	M1		For applying Newton's $2^{\text {nd }}$ law to A or to B
		$\begin{aligned} & {[m=\mathrm{T} / 8 \rightarrow \mathrm{~T}-(10-1.25 \mathrm{~T})=2-0.25 \mathrm{~T}} \\ & \text { or } \\ & \mathrm{T}=8 m \rightarrow 8 m-(10-10 m)=2-2 m] \end{aligned}$	M1		For eliminating or evaluating m
		$\begin{aligned} & \mathrm{T}+1.25 \mathrm{~T}+0.25 \mathrm{~T}=10+2 \\ & \text { or } \end{aligned}$			
		$m=0.6$ and $\mathrm{T}=8 \mathrm{~m}$	A1		
		$m=0.6$ and tension is 4.8 N	A1	4	
Alternative for part (ii)					
		$[\{m+(1-m)\} \times 2=\{m-(1-m)\} \times \mathrm{g}]$	M1		For using $\left(m_{\mathrm{A}}+m_{\mathrm{B}}\right) \mathrm{a}=\left(m_{\mathrm{A}}-m_{\mathrm{B}}\right) \mathrm{g}$
		$m=0.6$	A1		
		$[m \mathrm{~g}-\mathrm{T}=2 m$ or $\mathrm{T}-(1-m) \mathrm{g}=2(1-m)]$	M1		For applying Newton's $2^{\text {nd }}$ law to A or to B, substituting for m and solving for T
		Tension is 4.8 N	A1		

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

5 (i)	Acceleration for $t<0.8$ is $4 / 0.8$	B1		For using $a=g \sin \theta$
[$5=10 \sin \theta$]		M1		
	$\theta=30^{\circ}$	A1	3	
Alternative for part (i)				
(i)	$\left[m g h=1 / 2 m 4^{2}\right.$ and $\left.s=\{(0+4) \div 2\} \times 0.8\right]$	M1		For using PE loss $=\mathrm{KE}$ gain and $s \div t$$=(u+v) \div 2(A \text { to } B)$
	$\sin \theta=0.8 / 1.6$	A1		
	$\theta=30^{\circ}$	A1		
(ii)	Acceleration for $0.8<t<4.8$ is			
	$-4 /(4.8-0.8)$	B1		
	$\left[m g \sin 30^{\circ}-\mathrm{F}=m(-1)\right]$	M1		For using Newton's second law
		M1		For using $\mu=F / R$
	$\mu=\frac{m g \sin 30^{\circ}+m}{m g \cos 30^{\circ}}$	A1ft		ft following a wrong answer for θ in part (i)
	Coefficient is 0.693	A1	5	Accept 0.69

Page 7 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

(i)	$\begin{aligned} & {[30000 / v-1000-1250 g \times 30 / 500=} \\ & 1250 a] \end{aligned}$			For using DF $=30000 / v$
		M1		For using Newton's $2^{\text {nd }}$ law
	$\begin{aligned} & v_{\text {bottom }}=30000 /(1250 \times 4+1000+750) \\ & \text { and } \end{aligned}$	M1		
	$v_{\text {top }}=30000 /(1250 \times 0.2+1000+750)$	A1		
	$\left[1 / 21250\left(15^{2}-4.44 \ldots . . .^{2}\right)\right]$	M1		For using KE gain = $1 / 2 m\left(v_{\text {top }}{ }^{2}-v_{\text {botom }}{ }^{2}\right)$
	Increase in KE is $128000 \mathrm{~J}(128 \mathrm{~kJ})$	A1	5	
Alternative for part (i)				
(i)	$[\mathrm{F}-1000-1250 g \times 30 / 500=1250 a]$	M1		For using Newton's second law to find the driving force at the bottom and the top
	$\begin{aligned} & \mathrm{F}_{\text {bottom }}=1250 \times 4+1000+750=6750 \text { and } \\ & \mathrm{F}_{\text {top }}=1250 \times 0.2+1000+750=2000 \end{aligned}$	A1		
	[$\nu_{\text {bottom }}=30000 / 6750$ and $\left.\nu_{\text {top }}=30000 / 2000\right]$	M1		For using $\mathrm{DF}=30000 / \mathrm{v}$ to find $v_{\text {botom }}$ and $v_{\text {top }}$
	[$\left.1 / 21250\left(15^{2}-4.44 \ldots . . .^{2}\right)\right]$	M1		For using KE gain $=$ $1 / 2 m\left(v_{\text {top }}{ }^{2}-v_{\text {bottom }}{ }^{2}\right)$
	Increase in KE is $128000 \mathrm{~J}(128 \mathrm{~kJ})$	A1		
(ii)	PE gain $=1250 \mathrm{~g} \times 30$ and			
	WD against resistance $=1000 \times 500$	B1		
	$\left[\mathrm{WD}_{\text {car }}=128000+375000+500000\right]$	M1		For using WD by car's engine $=$ KE gain + PE gain + WD against resistance
	Work done is $1000000 \mathrm{~J}(1000 \mathrm{~kJ})$	A1ft	3	ft incorrect answer in (i)
Special Ruling applying to part (i) for candidates who omit the weight component in applying Newton's second law. (Max 3 out of 5)				
(i)	$\begin{aligned} & v_{\text {bottom }}=30000 /(1250 \times 4+1000) \text { and } \\ & v_{\text {top }}=30000 /(1250 \times 0.2+1000) \end{aligned}$	B1		
	[$\left.1 / 21250\left(24^{2}-5^{2}\right)\right]$	M1		For using KE gain $=$ $1 / 2 m\left(v_{\text {top }}{ }^{2}-v_{\text {botom }}{ }^{2}\right)$
	Increase in KE is $344000 \mathrm{~J}(344 \mathrm{~kJ}$)	A1		

Page 8	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

$7 \quad$ (i)	$\mathrm{d} v / \mathrm{d} t=k\left(120 t-3 t^{2}\right)$	B1		
	$\left[\nu(40)=k\left(60 \times 40^{2}-40^{3}\right)=6.4\right]$	M1		For finding $v_{\text {max }}$ as the value of v when $\mathrm{d} v / \mathrm{d} t=0$ and $t \neq 0$ and equating with 6.4
	$k=0.0002$	A1	3	AG
(ii)	$t=60$ at A	B1		
		M1		For integrating $v(t)$ to find $s(t)$
	$s(t)=0.0002\left(20 t^{3}-t^{4} / 4\right) \quad(+C)$	A1		
	$\left[O A=0.0002 \times\left(20 \times 60^{3}-60^{4} / 4\right)\right]$	M1		For using limits 0 to 60 or evaluating $s(t)$ when $t=60$ with $C=0$ (which may be implied by its absence)
	Distance is 216 m	A1	5	
(iii)	$\left[\mathrm{d} v / \mathrm{d} t=0.0002\left(120 \times 60-3 \times 60^{2}\right)\right]$	M1		For evaluating $\mathrm{d} v / \mathrm{d} t$ when $t=60$
	Magnitude of acceleration is $0.72 \mathrm{~ms}^{-2}$	A1	2	Accept $a=-0.72 \mathrm{~ms}^{-2}$
(iv)	$\begin{aligned} & {\left[20 t^{3}-0.25 t^{4}=0,\right.} \\ & \left.v=0.0002\left(60 \times 80^{2}-80^{3}\right)\right] \end{aligned}$	M1		For attempting to solve $s(t)=0$ for non-zero t and substituting into $v(t)$.
	Speed is $25.6 \mathrm{~ms}^{-1}$	A1	2	

