Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	$\mathbf{4 1}$

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	$\mathbf{4 1}$

6 (i) $1 / 2 m v_{\mathrm{B}}^{2}=1 / 2 m v_{\mathrm{A}}^{2}-m g \times 2.7$ and $1 / 2 m v_{\mathrm{c}}{ }^{2}=1 / 2 m v_{\mathrm{A}}{ }^{2}-m g \times 3$ $\begin{aligned} & {\left[v_{\mathrm{B}}^{2}=8^{2}-20 \times 2.7, v_{\mathrm{C}}^{2}=8^{2}-20 \times 3\right]} \\ & \text { Loss of speed }=10^{1 / 2}-2=1.16 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	For using the principle of conservation of energy from A to B or from A to C For substituting for v_{A} to find $v_{\mathrm{B}}-v_{\mathrm{C}}$
(ii) Work done $=1 / 20.2 \times 2^{2}+0.2 \times g \times 3$ (=6.4)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		For using: WD against friction $(C$ to $D)=$ KE at $C+$ loss of PE (C to D)
	M1		For using WD against friction $(M$ to $D)=$ KE at $M+$ loss of PE (M to D)
$1 / 2(0.4+6)=1 / 20.2 v_{\mathrm{M}}{ }^{2}+0.2 g \times 1.5$	A1		
Speed at midpoint is $1.41 \mathrm{~ms}^{-1}$	A1	5	
$7 \quad$ (i) $\mathrm{DF}=17280 / 12(=1440 \mathrm{~N})$	B1		
$[\mathrm{DF}-\mathrm{R}=m a \rightarrow 1440-960=1200 a]$	M1		For using Newton's $2^{\text {nd }}$ law
Acceleration is $0.4 \mathrm{~ms}^{-2}$	A1	3	
	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For using $\mathrm{P} / v-\mathrm{R}=0$ AG
(iii) For $B C,-960=1200 a(a=-0.8)$	B1		
	M1		For using $0=18+a t$ and $0=18^{2}+2$ as for $B C$
$\begin{aligned} & t_{B C}=(0-18) /(-0.8) \text { and } s_{B C}=\left(0-18^{2}\right) /(-1.6) \\ & (=22.5 \mathrm{~s} \text { and } 202.5 \mathrm{~m}) \end{aligned}$	A1		
Distance $A B=18(52.5-22.5)$	B1		
Distance is $A C$ is 742.5 m	A1	5	Accept 742 or 743

