Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9709	33

1 State or imply $\ln \mathrm{e}=1$
Apply at least one logarithm law for product or quotient correctly
Obtain $x+5=\mathrm{e} x$ or equivalent and hence $\frac{5}{\mathrm{e}-1}$

2 (i) State or imply $R=25$
Use correct trigonometric formula to find α
Obtain 16.26° with no errors seen
(ii) Evaluate of $\sin ^{-1} \frac{17}{R}\left(=42.84 \ldots{ }^{\circ}\right)$

Obtain answer 59.1°

3 (i) Either Use correct quotient rule or equivalent to obtain

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{4(2 t+3)-8 t}{(2 t+3)^{2}} \text { or equivalent }
$$

Obtain $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{4}{2 t+3}$ or equivalent
Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t} / \frac{\mathrm{d} x}{\mathrm{~d} t}}{}$ or equivalent
Obtain $\frac{1}{3}(2 t+3)$ or similarly simplified equivalent
Or Express t in terms of x or y e.g. $t=\frac{3 x}{4-2 x}$
Obtain Cartesian equation e.g. $y=2 \ln \left(\frac{6}{2-x}\right)$
Differentiate and obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{2-x}$
Obtain $\frac{1}{3}(2 t+3)$ or similarly simplified equivalent
(ii) Obtain $2 t=3$ or $t=\frac{3}{2}$

Substitute in expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and obtain 2

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9709	33

4 Separate variables correctly and integrate one side
Obtain $\ln y=\ldots$ or equivalent A1

Obtain $=3 \ln \left(x^{2}+4\right)$ or equivalent A1
Evaluate a constant or use $x=0, y=32$ as limits in a solution M1
containing terms $a \ln y$ and $b \ln \left(x^{2}+4\right)$
Obtain $\ln y=3 \ln \left(x^{2}+4\right)+\ln 32-3 \ln 4$ or equivalent
Obtain $y=\frac{1}{2}\left(x^{2}+4\right)$ or equivalent

5 (i) Either Use correct product rule
Obtain $3 \mathrm{e}^{-2 x}-6 x \mathrm{e}^{-2 x}$ or equivalent A1
Substitute $-\frac{1}{2}$ and obtain 6e
Or Take \ln of both sides and use implicit differentiation correctly M1
Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=y\left(\frac{1}{x}-2\right)$ or equivalent
Substitute $-\frac{1}{2}$ and obtain 6e
(ii) Use integration by parts to reach $k x \mathrm{e}^{-2 x} \pm \int k \mathrm{e}^{-2 x} \mathrm{~d} x$

Obtain $-\frac{3}{2} x \mathrm{e}^{-2 x}+\int \frac{3}{2} \mathrm{e}^{-2 x} \mathrm{~d} x$ or equivalent A1

Obtain $-\frac{3}{2} x \mathrm{e}^{-2 x}-\frac{3}{4} \mathrm{e}^{-2 x}$ or equivalent
Substitute correct limits correctly DM1
Obtain $-\frac{3}{4}$ with no errors or inexact work seen A1

6 (i) Find y for $x=-2$
Obtain 0 and conclude that $\alpha=-2 \quad$ A1
(ii) Either Find cubic factor by division or inspection or equivalent M1

Obtain $x^{3}+2 x-8 \quad$ A1
Rearrange to confirm given equation $x=\sqrt[3]{8-2 x} \quad$ A1
Or Derive cubic factor from given equation and form product with $(x-\alpha) \quad$ M1
$(x+2)\left(x^{3}+2 x-8\right) \quad$ A1
Obtain quartic $x^{4}+2 x^{3}+2 x^{2}-4 x-16(=0) \quad$ A1
Or Derive cubic factor from given equation and divide the quartic by the cubic M1
$\left(x^{4}+2 x^{3}+2 x^{2}-4 x-16\right) \div\left(x^{3}+2 x-8\right) \quad$ A1
Obtain correct quotient and zero remainder A1
(iii) Use the given iterative formula correctly at least once M1

Obtain final answer 1.67 A1
Show sufficient iterations to at least 4 d.p. to justify answer 1.67 to 2 d.p. or show there is a change of sign in interval $(1.665,1.675)$

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9709	33

7 (i) State or imply $\mathrm{d} u=2 \cos 2 x \mathrm{~d} x$ or equivalent
Express integrand in terms of u and $\mathrm{d} u$ M1
Obtain $\int \frac{1}{2} u^{3}\left(1-u^{2}\right) \mathrm{d} u$ or equivalent A1

Integration to obtain an integral of the form $k_{1} u^{4}+\mathrm{k}_{2} \mathrm{u}^{6}, \mathrm{k}_{1}, \mathrm{k}_{2} \neq 0$
Use limits 0 and 1 or (if reverting to x) 0 and $\frac{1}{4} \pi$ correctly
Obtain $\frac{1}{24}$, or equivalent

8 (i) State or imply general point of either line has coordinates $(5+s, 1-s,-4+3 s)$ or $(p+2 t, 4+5 t,-2-4 t)$
Solve simultaneous equations and find s and t
Obtain $s=2$ and $t=-1$ or equivalent in terms of p A1
Substitute in third equation to find $p=9$
State point of intersection is $(7,-1,2)$
(ii) Either Use scalar product to obtain a relevant equation in a, b, c e.g. $a-b+3 c=0$ or $2 a+5 b-4 c=0$

State two correct equations in a, b, c
Solve simultaneous equations to obtain at least one ratio DM1
Obtain $a: b: c=-11: 10: 7$ or equivalent
Obtain equation $-11 x+10 y+7 z=-73$ or equivalent with integer coefficients
Or 1 Calculate vector product of $\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}2 \\ 5 \\ -4\end{array}\right)$
Obtain two correct components of the product
Obtain correct $\left(\begin{array}{c}-11 \\ 10 \\ 7\end{array}\right)$ or equivalent
Substitute coordinates of a relevant point in $\mathbf{r} . \mathbf{n}=d$ to find d
Obtain equation $-11 x+10 y+7 z=-73$ or equivalent with integer coefficients
Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane
Obtain $\mathbf{r}=\left(\begin{array}{c}5 \\ 1 \\ -4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)+\mu\left(\begin{array}{c}2 \\ 5 \\ -4\end{array}\right)$ or equivalent
Eliminate λ and μ
Obtain $11 x-10 y-7 z=73$ or equivalent with integer coefficients

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2012	9709	33

9 (i) State or imply form $\frac{A}{3-x}+\frac{B x+C}{1+x^{2}}$
Use relevant method to determine a constant
Obtain $A=6$
Obtain $B=-2$
Obtain $C=1$
(ii) Either Use correct method to obtain first two terms of expansion
of $(3-x)^{-1}$ or $\left(1-\frac{1}{3} x\right)^{-1}$ or $\left(1+x^{2}\right)^{-1}$
Obtain $\frac{A}{3}\left(1+\frac{1}{3} x+\frac{1}{9} x^{2}+\frac{1}{27} x^{3}\right)$
Obtain $(B x+C)\left(1-x^{2}\right)$
Obtain sufficient terms of the product $(B x+C)\left(1-x^{2}\right), B, C \neq 0$ and add the two expansions
Obtain final answer $3-\frac{4}{3} x-\frac{7}{9} x^{2}+\frac{56}{27} x^{3}$
Or Use correct method to obtain first two terms of expansion
of $(3-x)^{-1}$ or $\left(1-\frac{1}{3} x\right)^{-1}$ or $\left(1+x^{2}\right)^{-1}$
Obtain $\frac{1}{3}\left(1+\frac{1}{3} x+\frac{1}{9} x^{2}+\frac{1}{27} x^{3}\right)$
Obtain $\left(1-x^{2}\right)$
Obtain sufficient terms of the product of the three factors A1

Obtain final answer $3-\frac{4}{3} x-\frac{7}{9} x^{2}+\frac{56}{27} x^{3}$

10 (a) Expand and simplify as far as $\mathrm{i} w^{2}=-8 \mathrm{i}$ or equivalent
Obtain first answer $\mathrm{i} \sqrt{8}$, or equivalent B1
Obtain second answer $-\mathrm{i} \sqrt{8}$, or equivalent and no others
(b) (i) Draw circle with centre in first quadrant
Draw correct circle with interior shaded or indicated
(ii) Identify ends of diameter corresponding to line through origin and centre

Obtain $p=3.66$ and $q=7.66$
Show tangents from origin to circle
Evaluate $\sin ^{-1}\left(\frac{1}{4} \sqrt{2}\right)$
Obtain $\alpha=\frac{1}{4} \pi-\sin ^{-1}\left(\frac{1}{4} \sqrt{2}\right)$ or equivalent and hence 0.424
Obtain $\beta=\frac{1}{4} \pi+\sin ^{-1}\left(\frac{1}{4} \sqrt{2}\right)$ or equivalent and hence 1.15

