			9709	_w12_m	<u>s_3</u> 2
	Page 4	Mark Scheme	Syllabus	Paper	,
		GCE AS/A LEVEL – October/November 2012	9709	32	
1	EITHER	State or imply non-modular inequality $(3(x-1))^2 < (2x+1)^2$ or corresponding quadratic equation, or pair of linear equations Make reasonable solution attempt at a 3-term quadratic, or solve equations Obtain critical values $x = \frac{2}{5}$ and $x = 4$ State answer $\frac{2}{5} < x < 4$	$3(x-1) = \pm (2x + y)$ we two linear	 B1 M1 A1 A1 	
	OR	Obtain critical value $x = \frac{2}{5}$ or $x = 4$ from a graphical method, or solving a linear equation or inequality Obtain critical values $x = \frac{2}{5}$ and $x = 4$ State answer $\frac{2}{5} < x < 4$ [Do not condone \leq for $<$.]	by inspection, or b	y B1 B2 B1	[4]
2	EITHER	Use laws of indices correctly and solve for 5^x or for 5^{-x} or for 5 Obtain 5^x or for 5^{-x} or for 5^{x-1} in any correct form, e.g. $5^x = \frac{5}{1-1}$ Use correct method for solving $5^x = a$, or $5^{-x} = a$, or $5^{x-1} = a$, whe Obtain answer $x = 1.14$	$\frac{1}{\sqrt{5}}$ Here a > 0	M1 A1 M1 A1	
	OR	Use an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(5^{x-1}+5)}{\ln 5}$, correct Obtain answer 1.14 Show sufficient iterations to at least 3 d.p. to justify 1.14 to 2 d there is a sign change in the interval (1.135, 1.145) Show there is no other root [For the solution $x = 1.14$ with no relevant working give B1, ar 1.14 is shown to be the only solution.]	etly, at least once .p., or show nd a further B1 if	M1 A1 A1 A1	[4]
3	Attempt u Obtain a d Use trig. f Obtain tan Obtain an [Ignore an	use of sin $(A + B)$ and cos $(A - B)$ formulate to obtain an equation correct equation in any form formula to obtain an equation in tan θ (or cos θ , sin θ or cot θ) n $\theta = \frac{\sqrt{6} - 1}{1 - \sqrt{2}}$, or equivalent (or find cost θ , sin θ or cot θ) nswer $\theta = 105.9^{\circ}$, and no others in the given interval nswers outside the given material]	1 in cos θ and sin θ	M1 A1 M1 A1 A1	[5]
4	(i) Obta Equa Obta	ain correct unsimplified terms in x and x^3 ate coefficients and solve for a ain final answer $a = \frac{1}{\sqrt{2}}$, or exact equivalent		B1 + B1 M1 A1	[4]
	(ii) Use of ObtaObta[Syn[The	correct method and value of <i>a</i> to find the first two terms of the example $1 - \sqrt{2x}$, or equivalent $1 - \sqrt{2x}$, or equivalent $\frac{3}{2}x^2$ mbolic coefficients, e.g. $\binom{-2}{1}a$, are not sufficient for the first B n e f.t. is solely on the value of <i>a</i> .]	(1 + ax) ⁻² harks]	M1 A1 √ A1 √	`[3]

Page 5		~~ F	Mark Sahama	9709 Syllebus	<u>_w12_m</u>	<u>w12_ms_3</u> 2	
		ge 5	GCF AS/A EVFL – October/November 2012	9709	<u>- raper</u> 32		
				5705			
5	(i)	Use corre Obtain the	ct quotient or chain rule e given answer correctly having shown sufficient working		M1 A1	[2]	
	(ii)	Use a vali version of	d method, e.g. multiply numerator and denominator by sec x Pythagoras to justify the given identity	$+\tan x$, and a	B1	[1]	
	(iii)	Substitute Obtain giv	e, expand (sec $x + \tan x$) ² and use Pythagoras once ven identity		M1 A1	[2]	
	(iv)	Obtain int	$x = 2 \tan x - x + 2 \sec x$		B1		
		Use correct limits correctly in an expression of the form $a \tan x + bx + c \sec x$, or equivalent, where $abc \neq 0$					
		Obtain the	e given answer correctly		AI	[3]	
6	Sep Obt	arate varial ain term ln	bles correctly and attempt integration of one side x		B1 B1		
	Stat	e or imply	$\frac{1}{1-y^2} \equiv \frac{A}{1-y} + \frac{B}{1+y}$ and use a relevant method to find A or B		M1		
	Obtain $A = \frac{1}{2}$, $B = \frac{1}{2}$						
	Integrate and obtain $-\frac{1}{2}\ln(1-y) + \frac{1}{2}\ln(1+y)$, or equivalent					`	
	[If the integral is directly stated as $k_1 \ln\left(\frac{1+y}{1-y}\right)$ or $k_2 \ln\left(\frac{1-y}{1+y}\right)$ give M1, and then A2 for						
	$k_1 =$ Eva and [Th: $k \ln 2$	$\frac{1}{2} \text{ or } k_2 = -$ luate a con $c \ln (1 + y)$ is M mark $\frac{1}{2}$	$\frac{1}{2}$] stant, or use limits $x = 2$, $y = 0$ in a solution containing terms), where $abc \neq 0$ is not available if the integral of $1/(1 - y^2)$ is initially taken to	$a \ln x$, $b \ln (1 - y)$ be of the form	[•]) M1		
	Obt	ain solution	h in any correct form, e.g. $\frac{1}{2} \ln \left(\frac{1+y}{1-y} \right) = \ln x - \ln 2$		A1		
	Rea	rrange and	obtain $y = \frac{x^2 - 4}{x^2 + 4}$, or equivalent, free of logarithms		A1	[8]	
7	(i)	EITHER:	State or imply $\frac{1}{x} + \frac{1}{y} \frac{dy}{dx}$ as derivative of ln xy, or equivalent		B1		
			State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3 , or equivalent		B1		
			Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$		M1		
			Obtain the given answer $(1 + 3)$ to the set of dv to the set of dv		A1		
		OR	Obtain $xy = \exp((1+y^2))$ and state or imply $y + x \frac{1}{dx}$ as deriva	tive of xy	BI		
			State or imply $3y^2 \frac{1}{dx} \exp((1+y^2))$ as derivative of $(1+y^2)$		BI		
			Equate derivatives and solve for $\frac{2}{dx}$			[4]	
			[The M1 is dependent on at least one of the B marks being of	earned]	A1	[4]	
	(ii)	Equate de Obtain y = Substitute Obtain x =	nominator to zero and solve for <i>y</i> = 0.693 only found value in the equation and solve for <i>x</i> = 5.47 only		M1* A1 M1(0 A1	1ep*) [4]	

			No.4. Oak and	9709	<u>w12_m</u> ;	3_32		
Page 6		ge 6	Mark Scheme	Syllabus	Paper	raper		
			GCE AS/A LEVEL – October/November 2012	9709	32			
8	(i)	Use corre Obtain de	ct product or quotient rule and use chain rule at least once rivative in any correct form		M1 A1			
		for real <i>x</i>	rivative to zero and solve an equation with at least two non-ze	ro terms	M1			
		Obtain an	swer $x = \frac{1}{\sqrt{2}}$, or exact equivalent		A1	[4]		
	(ii)	State a su	itable equation, e.g. $\alpha = \sqrt{(\ln(4 + 8\alpha^2))}$		B1			
		Rearrange	e to reach $e^{\alpha^2} = 4 + 8\alpha^2$		B1			
		Obtain $\frac{1}{2}$ =	$= e^{-\frac{1}{2}\alpha} \sqrt{(1+2\alpha^2)}$, or work vice versa		B1	[3]		
	(iii)	Use the it	erative formula correctly at least once		M1			
		Obtain fir Show suf	nal answer 1.86 ficient iterations to 4 d.p. to justify 1.86 to 2 d.p., or show ther	e is a sign	A1			
		change in	the interval (1.855, 1.865)	0	A1	[3]		
9 ((i)	EITHER	Substitute $x = 1 + \sqrt{2}$ i and attempt the expansions of the x^2 a	and x^4 terms	M1			
			Use $i^2 = -1$ correctly at least once		B1			
			State second root $1 - \sqrt{2}$ i		AI B1			
		OR 1	State second root $1 - \sqrt{2}$ i		B1			
		-	Carry out a complete method for finding a quadratic factor v	with zeros $1 \pm \sqrt{2}$ i	M1			
			Obtain $x^2 - 2x + 3$, or equivalent Show that the division of $p(x)$ by $x^2 - 2x + 3$ gives zero rema complete the verification	inder and	A1			
		OR 2	Substitute $x = 1 + \sqrt{2}$ i and use correct method to express x^2	and x^4 in polar for	m M1			
			Obtain x^2 and x^4 in any correct polar form (allow decimals h Complete an exact verification	ere)	B1 A1			
			State second root $1 - \sqrt{2}$ i, or its polar equivalent (allow dec	imals here)	B1	[4]		
	(ii)	Carry out	a complete method for finding a quadratic factor with zeros 1	$\pm \sqrt{2}$ i	M1*			
		Obtain x^2 Attempt d	-2x + 3, or equivalent livision of $p(x)$ by $x^2 - 2x + 3$ reaching a partial quotient $x^2 + k$	x.	A1			
		or equivalent						
		Obtain quadratic factor $x^2 - 2x + 2$ Find the zeros of the second quadratic factor, using $i^2 = -1$ Obtain roots $-1 + i$ and $-1 - i$						
		The seco	nd M1 is earned if inspection reaches an unknown factor x^2 +	Bx + C and an	AI	[0]		
		equation in B and/or C, or an unknown factor $Ax^2 + Bx + (6/3)$ and an equation in A and/or B] [If part (i) is attempted by the OR 1 method, then an attempt at part (ii) which uses or						
		quotes rel	evant working or results obtained in part (i) should be marked	using the scheme	for part	(ii)]		

Page 7			9709_w12				
		ge 7	Mark Scheme	Syllabus	Paper	_	
			GCE AS/A LEVEL – October/November 2012	9709	32		
10			Use seeler much at af relevant vesters, or subtract point as	tions to forma true			
10	(1)	EIIHEK	Use scalar product of relevant vectors, or subtract point equal equations in $a, b, c, a, c, b, 3a = 0$ and $a, b, 3a = 0$	ations to form two	M1*		
			Equations in u, b, c , e.g. $u = 5b - 5c = 0$ and $u = b - 5c = 0$ State two correct equations in a b c				
			State two concet equations in a,b,c Solve simultaneous equations and find one ratio e.g. $a:c.c$	b = 0	M1 (d	len*)	
			Obtain $a \cdot b \cdot c = 3 \cdot 0 \cdot 1$ or equivalent	D D = 0	A1	icp)	
			Substitute a relevant point in $3x + z = d$ and evaluate d		M1 (c	len*)	
			Obtain equation $3x + z = 13$, or equivalent		A1	, ep)	
		OR 1	Attempt to calculate vector product of relevant vectors,				
			e.g. $(i - 5j - 3k) \times (i - j - 3k)$		M2*		
			Obtain 2 correct components of the product		A1		
			Obtain correct product, e.g. $12i + 4k$		A1		
			Substitute a relevant point in $12x + 4z = d$ and evaluate d		M1 (c	lep*)	
			Obtain $3x + z = 13$, or equivalent		A1		
		OR 2	Attempt to form 2-parameter equation for the plane with rel	evant vectors	M2*		
			State a correct equation e.g. $\mathbf{r} = 3\mathbf{i} - 2\mathbf{j} + 4\mathbf{k} + \lambda(\mathbf{i} - 5\mathbf{j} - 3\mathbf{k})$	$+ \mu(\mathbf{i} - \mathbf{j} - 3\mathbf{k})$	A1		
			State 3 equations in <i>x</i> , <i>y</i> , <i>z</i> , λ and μ		A1		
			Eliminate λ and μ		M1 (c	lep*)	
			Obtain equation $3x + z = 13$, or equivalent		A1	[6]	
	(ii)	EITHER	Find <i>CP</i> for a point <i>P</i> on <i>AB</i> with a parameter <i>t</i> , e.g. $2\mathbf{i} + 3\mathbf{j} \rightarrow$	$+7\mathbf{k}+t(-\mathbf{i}+\mathbf{j}+3\mathbf{k})$	B1 √.		
			<i>Either:</i> Equate scalar product <i>CP</i> , <i>AB</i> to zero and form an equation	uation in <i>t</i>			
			Or 1: Equate derivative for CP^2 (or CP) to zero and form an	equation in t			
			Or 2: Use Pythagoras in triangle CPA (or CPB) and form an	equation in t	M1		
			Solve and obtain correct value of <i>t</i> , e.g. $t = -2$		A1		
			Carry out a complete method for finding the length of <i>CP</i>		M1		
			Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1		
		OR 1	State \overrightarrow{AC} (or \overrightarrow{BC}) and \overrightarrow{AB} in component form		B1 √		
			Using a relevant scalar product find the cosine of <i>CAB</i> (or <i>C</i>	(BA)	M1		
			Obtain cost $CAB = -\frac{22}{2}$ or cos $CBA = \frac{33}{2}$ or equiv	valent	A1		
			$\sqrt{11.\sqrt{62}}$ $\sqrt{11.\sqrt{117}}$		M1		
			Obtain answer $2\sqrt{2}$ (4.24), or equivalent				
		0.0.2	Obtain answer $5\sqrt{2}$ (4.24), of equivalent				
		OR 2	State AL (or BL) and AB in component form		BIV		
			Using a relevant scalar product find the length of the project	ion AC (or BC)			
			on AB		M1		
			Obtain answer $2\sqrt{11}$ (or), $3\sqrt{11}$ or equivalent		A1		
			Use Pythagoras to find the length of the perpendicular		M1		
			Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1		
		OR 3	State \overrightarrow{AC} (or \overrightarrow{BC}) and \overrightarrow{AB} in component form		B1 √		
			Calculate their vector product, e.g. $(-2\mathbf{i} - 3\mathbf{j} - 7\mathbf{k}) \times (-\mathbf{i} + \mathbf{j})$	+ 3 k)	M1		
			Obtain correct product, e.g. $-2\mathbf{i} + 13\mathbf{j} - 5\mathbf{k}$		A1		
			Divide modulus of the product by the modulus of \overrightarrow{AB}		M1		
			Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1		
		OR 4	State two of \overrightarrow{AB} , \overrightarrow{BC}) and \overrightarrow{AC} in component form		B1 √		
			Use cosine formula in triangle ARC to find $\cos A$ or $\cos P$		M1		
			Obtain and 4^{4} as and $p = 6^{6}$				
			$\cos A = -\frac{1}{2\sqrt{11}\sqrt{62}}, \text{ or } \cos B = \frac{1}{2\sqrt{11}\sqrt{117}}$		AI		
			Use trig to find the length of the perpendicular		M1		
			Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1	[5]	
			[The f.t is on \overrightarrow{AB}]				