	Page 4	Mark Scheme Sy	llabus	Paper	s_3 •
		GCE AS/A LEVEL – October/November 2012	9709	31	
	<i>EITHER</i> State or imply non-modular inequality $(3(x - 1))^2 < (2x + 1)^2$ or corresponding quadratic equation, or pair of linear equations $3(x - 1) = \pm (2x + Make reasonable solution attempt at a 3-term quadratic, or solve two linear$		-		
		equations Obtain principal values $y = \frac{2}{3}$ and $y = 4$		M1	
		Obtain critical values $x = \frac{2}{5}$ and $x = 4$		A1	
		State answer $\frac{2}{5} < x < 4$		A1	
	OR	Obtain critical value $x = \frac{2}{5}$ or $x = 4$ from a graphical method, or by insp	ection, or by	У	
		solving a linear equation or inequality		B1	
		Obtain critical values $x = \frac{2}{5}$ and $x = 4$		B2	
		State answer $\frac{2}{5} < x < 4$		B1	[4]
		[Do not condone \leq for $<$.]			
	EITHER	Use laws of indices correctly and solve for 5^x or for 5^{-x} or for 5^{x-1}		M1	
		Obtain 5 ^x or for 5 ^{-x} or for 5 ^{x-1} in any correct form, e.g. $5^x = \frac{5}{1 - \frac{1}{5}}$		A1	
		Use correct method for solving $5^x = a$, or $5^{-x} = a$, or $5^{x-1} = a$, where $a > a$	0	M1	
		Obtain answer $x = 1.14$	Ŭ	A1	
	OR	Use an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(5^{x-1}+5)}{\ln 5}$, correctly, at let	east once	M1	
		Obtain answer 1.14		A1	
		Show sufficient iterations to at least 3 d.p. to justify 1.14 to 2 d.p., or s there is a sign change in the interval (1.135, 1.145)	how	A1	
		Show there is no other root		A1 A1	[4]
		[For the solution $x = 1.14$ with no relevant working give B1, and a furt 1.14 is shown to be the only solution.]	her B1 if		
5	Attempt u	use of sin $(A + B)$ and cos $(A - B)$ formulate to obtain an equation in cos	θ and sin θ	M1	
		correct equation in any form		A1	
	•	formula to obtain an equation in tan θ (or cos θ , sin θ or cot θ)		M1	
		$h \theta = \frac{\sqrt{6} - 1}{1 - \sqrt{2}}$, or equivalent (or find cost θ , sin θ or cot θ)		A1	
	Obtain answer $\theta = 105.9^{\circ}$, and no others in the given interval [Ignore answers outside the given material]			A1	[5]
	(i) Obtain correct unsimplified terms in x and x^3 B1				
•		the coefficients and solve for a	1	B1 + B1 M1	
	-	in final answer $a = \frac{1}{\sqrt{2}}$, or exact equivalent		A1	[4]
	(ii) Use correct method and value of a to find the first two terms of the expansion $(1 + ax)^{-2}$			M1	
		in $1 - \sqrt{2x}$, or equivalent		A1 √	
		in term $\frac{3}{2}x^2$		A1√	`[3]
	[Sym	holic coefficients, e.g. $\binom{-2}{1}a$, are not sufficient for the first B marks]			
		f.t. is solely on the value of <i>a</i> .]			

	D	Mark Oak and	_	<u>w12 m</u>	
	Page 5	Mark Scheme GCE AS/A LEVEL – October/November 2012	Syllabus 9709	Paper 31	
			5705	01	
5		rect quotient or chain rule he given answer correctly having shown sufficient working		M1 A1	[2]
		lid method, e.g. multiply numerator and denominator by sec x of Pythagoras to justify the given identity	$+ \tan x$, and a	B1	[1]
		te, expand $(\sec x + \tan x)^2$ and use Pythagoras once given identity		M1 A1	[2]
	Use com	ntegral $2 \tan x - x + 2 \sec x$ rect limits correctly in an expression of the form $a \tan x + bx + bx$	$c \sec x$, or	B1	
	-	ent, where $abc \neq 0$ the given answer correctly		M1 A1	[3]
6	Obtain term			B1 B1	
	State or impl Obtain $A = \frac{1}{2}$	$y \frac{1}{1-y^2} \equiv \frac{A}{1-y} + \frac{B}{1+y}$ and use a relevant method to find A or B $B = \frac{1}{2}$		M1	
	Integrate and	obtain $-\frac{1}{2}\ln(1-y) + \frac{1}{2}\ln(1+y)$, or equivalent al is directly stated as $k_1 \ln(\frac{1+y}{1-y})$ or $k_2 \ln(\frac{1-y}{1+y})$ give M1, and the		A1 🗸	
	and $c \ln(1 +$	$\left[\frac{-\frac{1}{2}}{2}\right]$ instant, or use limits $x = 2$, $y = 0$ in a solution containing terms y), where $abc \neq 0$ is not available if the integral of $1/(1-y^2)$ is initially taken to		M1	
	Obtain soluti	on in any correct form, e.g. $\frac{1}{2} \ln \left(\frac{1+y}{1-y} \right) = \ln x - \ln 2$		A1	
	Rearrange an	d obtain $y = \frac{x^2 - 4}{x^2 + 4}$, or equivalent, free of logarithms		A1	[8]
7	(i) EITHER	2: State or imply $\frac{1}{x} + \frac{1}{y} \frac{dy}{dx}$ as derivative of ln xy, or equivalent		B1	
		State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3 , or equivalent		B1	
		Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$		M1	
	OR	Obtain the given answer Obtain $xy = \exp(1 + y^3)$ and state or imply $y + x \frac{dy}{dx}$ as derived	tive of xv	A1 B1	
	011	State or imply $3y^2 \frac{dy}{dx} \exp(1+y^3)$ as derivative of $(1+y^3)$		B1	
		Equate derivatives and solve for $\frac{dy}{dx}$		M1	
		Obtain the given answer [The M1 is dependent on at least one of the B marks being]	earned]	A1	[4]
	Obtain y	denominator to zero and solve for y y = 0.693 only te found value in the equation and solve for x		M1* A1 M1(/	dep*)
		x = 5.47 only		A1	[4]

		9709_1				_
	Pa	ge 6	Mark Scheme	Syllabus	Paper	•
			GCE AS/A LEVEL – October/November 2012	9709	31	
8	(i)	Use correct product or quotient rule and use chain rule at least once Obtain derivative in any correct form Equate derivative to zero and solve an equation with at least two no for real x		zero terms	M1 A1 M1	
		Obtain an	swer $x = \frac{1}{\sqrt{2}}$, or exact equivalent		A1	[4]
	(ii)	State a su Rearrange	itable equation, e.g. $\alpha = \sqrt{(\ln(4 + 8\alpha^2))}$ e to reach $e^{\alpha^2} = 4 + 8\alpha^2$ = $e^{-\frac{1}{2}\alpha^2} \sqrt{(1 + 2\alpha^2)}$, or work <i>vice versa</i>		B1 B1	[2]
		$\frac{1}{2}$	$\sqrt{1+2\alpha^2}$, of work vice versu		B1	[3]
	(iii)	Obtain fir	erative formula correctly at least once nal answer 1.86 ficient iterations to 4 d.p. to justify 1.86 to 2 d.p., or show the	ro is a sign	M1 A1	
			the interval $(1.855, 1.865)$		A1	[3]
9	(i)	EITHER	Substitute $x = 1 + \sqrt{2}$ i and attempt the expansions of the x^2 Use $i^2 = -1$ correctly at least once Complete the verification State second root $1 - \sqrt{2}$ i	and x^4 terms	M1 B1 A1 B1	
		OR 1	State second root $1 - \sqrt{2}$ i State second root $1 - \sqrt{2}$ i Carry out a complete method for finding a quadratic factor Obtain $x^2 - 2x + 3$, or equivalent Show that the division of $p(x)$ by $x^2 - 2x + 3$ gives zero rem complete the verification		B1 M1 A1 A1	
		OR 2	Substitute $x = 1 + \sqrt{2}$ i and use correct method to express x^4 Obtain x^2 and x^4 in any correct polar form (allow decimals) Complete an exact verification State second root $1 - \sqrt{2}$ i, or its polar equivalent (allow decimals)	here)		[4]
	(ii)	Obtain x^2	a complete method for finding a quadratic factor with zeros $-2x + 3$, or equivalent		M1* A1	
		or equival Obtain qu Find the z Obtain ro [The seco equation i [If part (i)	livision of $p(x)$ by $x^2 - 2x + 3$ reaching a partial quotient x^2 + lent addratic factor $x^2 - 2x + 2$ zeros of the second quadratic factor, using $i^2 = -1$ ots $-1 + i$ and $-1 - i$ nd M1 is earned if inspection reaches an unknown factor $x^2 - i$ n B and/or C, or an unknown factor $Ax^2 + Bx + (6/3)$ and an o is attempted by the OR 1 method, then an attempt at part (ii) evant working or results obtained in part (i) should be marked	Bx + C and an equation in A and/or which uses or	A1 M1 (A1 <i>B</i>]	(dep*) (dep*) [6] (ii)]

) (i)	ige 7	Mark Scheme	Syllabus	Paper		
) (i)		GCE AS/A LEVEL – October/November 2012	9709	31		
) (1)						
	EITHER	Use scalar product of relevant vectors, or subtract point equations $\frac{1}{2}$	ations to form two	N (1×		
		equations in <i>a</i> , <i>b</i> , <i>c</i> , e.g. $a - 5b - 3c = 0$ and $a - b - 3c = 0$ State two correct equations in <i>a</i> , <i>b</i> , <i>c</i>		M1* A1		
		State two correct equations in a,b,c Solve simultaneous equations and find one ratio, e.g. $a : c, c$	br b = 0	M1 (dep*)		
		Obtain $a:b:c=3:0:1$, or equivalent	D D = 0	A1		
		Substitute a relevant point in $3x + z = d$ and evaluate d		M1 (dep*)		
		Obtain equation $3x + z = 13$, or equivalent		Al		
	OR 1	Attempt to calculate vector product of relevant vectors,				
		e.g. $(i - 5j - 3k) \times (i - j - 3k)$		M2*		
		Obtain 2 correct components of the product		A1		
		Obtain correct product, e.g. $12i + 4k$		A1		
		Substitute a relevant point in $12x + 4z = d$ and evaluate d		M1 (dep*)		
	0.0.0	Obtain $3x + z = 13$, or equivalent		A1		
	OR 2	Attempt to form 2–parameter equation for the plane with rel		M2*		
		State a correct equation e.g. $\mathbf{r} = 3\mathbf{i} - 2\mathbf{j} + 4\mathbf{k} + \lambda(\mathbf{i} - 5\mathbf{j} - 3\mathbf{k})$	$(\mathbf{i} - \mathbf{j} - 3\mathbf{k})$	A1		
		State 3 equations in <i>x</i> , <i>y</i> , <i>z</i> , λ and μ		A1		
		Eliminate λ and μ		M1 (dep*)		
		Obtain equation $3x + z = 13$, or equivalent		A1 [6]		
(ii)	EITHER	Find \overrightarrow{CP} for a point <i>P</i> on <i>AB</i> with a parameter <i>t</i> , e.g. $2\mathbf{i} + 3\mathbf{j}$	+7k + t(-i + i + 3k)) B1√		
(11)		<i>Either:</i> Equate scalar product \overrightarrow{CP} , \overrightarrow{AB} to zero and form an ec) 21		
			•			
		Or 1: Equate derivative for CP^2 (or CP) to zero and form an		24		
		Or 2: Use Pythagoras in triangle CPA (or CPB) and form an	equation in t	M1		
		Solve and obtain correct value of <i>t</i> , e.g. $t = -2$ Carry out a complete method for finding the length of <i>CP</i>		A1 M1		
		Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1 B1 √		
	OR 1	State \overrightarrow{AC} (or \overrightarrow{BC}) and \overrightarrow{AB} in component form				
		Using a relevant scalar product find the cosine of <i>CAB</i> (or C_{22}^{22}	CBA)	M1		
		Obtain cost $CAB = -\frac{22}{\sqrt{11}\sqrt{62}}$, or cos $CBA = \frac{33}{\sqrt{11}\sqrt{117}}$, or equiv	alent	A1		
		Use trig to find the length of the perpendicular		M1		
		Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1		
	OR 2	State \overrightarrow{AC} (or \overrightarrow{BC}) and \overrightarrow{AB} in component form		B1 √		
		Using a relevant scalar product find the length of the project	tion AC (or BC)			
		on AB		M1		
		Obtain answer $2\sqrt{11}$ (or), $3\sqrt{11}$ or equivalent		A1		
		Use Pythagoras to find the length of the perpendicular		M1		
		Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1		
	OR 3	State \overrightarrow{AC} (or \overrightarrow{BC}) and \overrightarrow{AB} in component form		B1 √		
	011 5					
		Calculate their vector product, e.g. $(-2\mathbf{i} - 3\mathbf{j} - 7\mathbf{k}) \times (-\mathbf{i} + \mathbf{j})$	$+3\mathbf{k}$)	M1		
		Obtain correct product, e.g. $-2\mathbf{i} + 13\mathbf{j} - 5\mathbf{k}$		A1		
		Divide modulus of the product by the modulus of \overrightarrow{AB}		M1		
		Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1		
	OR 4	State two of \overrightarrow{AB} , \overrightarrow{BC}) and \overrightarrow{AC} in component form		B1 √		
		Use cosine formula in triangle ABC to find $\cos A$ or $\cos B$		M1		
		Obtain $\cos A = -\frac{44}{2\sqrt{11}\sqrt{62}}$, or $\cos B = \frac{66}{2\sqrt{11}\sqrt{117}}$		A1		
		Use trig to find the length of the perpendicular		M1		
		Obtain answer $3\sqrt{2}$ (4.24), or equivalent		A1 [5]		
		[The f.t is on \overrightarrow{AB}]		[2]		