Page 4	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	$\mathbf{2 2}$

1 EITHER State or imply non-modular inequality $(2 x+1)^{2}<(2 x-5)^{2}$, or M1
corresponding equation or pair of linear equations Obtain critical value 1 A1
State correct answer $x<1$ A1
OR State the critical value $x=1$, by solving a linear equation (or inequality) or from a graphical method or by inspection B2
State correct answer $x<1$ B1
2 Use quotient rule or product rule, correctly M1
Obtain correct derivative in any form A1
Equate derivative to zero and solve for x M1
Obtain $x=\frac{\pi}{8}$ A1[4]
3 (i) Attempt division by $x^{2}-3 x+2$ or equivalent, and reach a partial quotient of $x^{2}+k x$ M1
Obtain partial quotient $x^{2}-x$ A1
Obtain $x^{2}-x-2$ with no errors seen A1
(ii) Correct solution method for either quadratic e.g. factorisation M1
One correct solution from solving quadratic or inspection B1All solutions $x=2, x=1$ and $x=-1$ given and no othersA1
4 (i) State or imply correct ordinates $1.4142 \ldots, 1.1370 \ldots, 1$ B1
Use correct formula, or equivalent, correctly with $h=\frac{\pi}{4}$ and three ordinates M1Obtain answer 1.84 with no errors seenA1
(ii) Use the iterative formula correctly at least once M1
Obtain final answer 1.06 A1
Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a signchange in the interval $(1.055,1.065)$B1
B15 State or imply $\ln y=\ln A-x \ln b$
Form a numerical expression for the gradient of the line M1
Obtain $b=1.82$ A1
Use gradient and one point correctly to find $\ln A$ M1
Obtain $\ln A=3.5$ A1
Obtain $A=33.12$A1

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS LEVEL - October/November 2012	9709	22

6 (a) Obtain integral $k \mathrm{e}^{-\frac{1}{2} x}$ with any non-zero $k \quad$ M1
Correct integral
(b) State indefinite integral of the form $k \ln (3 x-1)$, where $k=2,6$ or $3 \quad$ M1

State correct integral $2 \ln (3 x-1)$
Substitute limits correctly (must be a function involving a logarithm) M1
Use law for the logarithm of a power or a quotient M1
Obtain given answer correctly A1

7 (i) State $4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $2 y^{2}$, or equivalent B1

State $4 y+4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $4 x y$, or equivalent B1

Equate derivative of LHS to zero and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ M1
Obtain given answer correctly A1
(ii) State or imply that the coordinates satisfy $3 x-2 y=0 \quad$ B1

Obtain an equation in x^{2} (or y^{2}) M1
Solve and obtain $x^{2}=4\left(\right.$ or $\left.y^{2}=9\right) \quad$ A1
State answer $(2,3)$
State answer ($-2,-3$)

8 (a) Use $\tan (A+B)$ formula to obtain an equation in $\tan \mathrm{B}$ M1
State equation $\frac{t+\tan B}{1-t \tan B}=4$, or equivalent
Solve to obtain $\tan B=\frac{4-t}{1+4 t}$
(b) State equation $2\left(\frac{\tan 45-\tan x}{1+\tan 45 \tan x}\right)=3 \tan x$, or equivalent B1

Transform to a quadratic equation
Obtain $3 \tan ^{2} x+5 \tan x-2=0$ (or equivalent) A1
Solve the quadratic and calculate one angle, or establish that $\tan x=1 / 3,-2$ M1
Obtain one answer, e.g. $x=18.4^{\circ}$
Obtain other 3 answers $116.6^{\circ}, 198.4^{\circ}, 296.6^{\circ}$ and no others in range A1

