Page 4	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - October/November 2012	9709	21

1 EITHER	State or imply non-modular inequality $(x-2)^{2} \geq(x+5)^{2}$, or corresponding equation or pair of linear equations Obtain critical value $-\frac{3}{2}$	M1
	State correct answer $x \leq-\frac{3}{2}$	A1
OR	State a correct linear equation for the critical value, e.g. $x-2=-x-5$, or corresponding correct linear inequality, e.g. $x-2 \geq-x-5$ Obtain critical value $-\frac{3}{2}$	A1
	State correct answer $x \leq-\frac{3}{2}$	A1

2 Use law for the logarithm of a product, a quotient or a power M1*
Obtain $x \log 5=(2 x-1) \log 3$ or equivalent
Solve for x
Obtain answer $x=1.87$

3 Make relevant use of the $\cos 2 \theta$ formula M1
Obtain a correct quadratic in $\cos \theta$ A1
Solve a quadratic in $\cos \theta$ M1
Obtain answer $\theta=60$ and no others in the range A1
(Ignore answers outside the given range)

4 (i) State $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{-2}{1-2 t}$ or $\frac{\mathrm{d} y}{\mathrm{~d} t}=-2 t^{-2}$
Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$
Obtain given answer correctly
(ii) Equate derivative to 3 and solve for $t \quad$ M1

State or imply that $t=-1$ c.w.o. A1
Obtain coordinates ($\ln 3,-2$)
ain A1

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS LEVEL - October/November 2012	9709	21

5 (i) Attempt to integrate and use limits θ and π M1
Obtain $1-\sin \theta$ A1
(ii) State that area of rectangle $=\theta \cos \theta$, equate area of rectangle to area of R and rearrange to given equation B1
(iii) Use the iterative formula correctly at least once M1
Obtain final answer 0.56 A1Show sufficient iterations to justify its accuracy to 2 d.p. or show there is asign change in the interval $(0.555,0.565)$B1
6 (a) State or imply correct ordinates $0.125,0.08743 \ldots, 0.21511 \ldots$ B1
Use correct formula, or equivalent, correctly with $h=0.5$ and three ordinates M1Obtain answer 0.11 with no errors seenA1
(b) Attempt to expand brackets and divide by $\mathrm{e}^{2 x}$ M1
Integrate a term of form $k \mathrm{e}^{-x}$ or $k \mathrm{e}^{-2 x}$ correctly AlV
Obtain 2 correct terms A1Fully correct integral $x+4 \mathrm{e}^{-x}-2 \mathrm{e}^{-2 x}+c$A1
7 (i) Substitute $x=-1$, equate to zero and obtain a correct equation in any form B1
Substitute $x=3$ and equate to 12 M1
Obtain a correct equation in any form A1
Solve a relevant pair of equations for a or for b M1
Obtain $a=-4$ and $b=6$ A1
(ii) Attempt division by $x^{2}-2$ and reach a partial quotient of $2 x-k$ M1
Obtain quotient $2 x-4$ A1
Obtain remainder -2A1
8 (i) Differentiate using chain or quotient rule M1
Obtain derivative in any correct form A1
Obtain given answer correctly A1
(ii) Differentiate using product rule M1
State derivative of $\tan \theta=\sec ^{2} \theta$ B1
Use trig identity $1+\tan ^{2} \theta=\sec ^{2} \theta$ correctly M1
Obtain $2 \sec ^{3} \theta-\sec \theta$ A1
(iii) Use $\tan ^{2} x=\sec ^{2} \theta-1$ to integrate $\tan ^{2} x$ M1
Obtain $3 \sec \theta$ from integration of $3 \sec \theta \tan \theta$ B1
Obtain $\tan \theta-3 \sec \theta$ A1
Attempt to substitute limits, using exact values M1
Obtain answer $4-3 \sqrt{2}$ A1

