			970	9709 w12 ms 21		
	Page 4	Mark Scheme	Syllabus	Paper		
		GCE AS LEVEL – October/November 2012	9709	21		
1	EITHER	State or imply non-modular inequality $(x-2)^2 \ge (x+5)^2$, or				
		corresponding equation or pair of linear equations		M1		
		Obtain critical value $-\frac{3}{2}$		A1		
		2				
		State correct answer $x \le -\frac{3}{2}$		A1		
	OR	State a correct linear equation for the critical value, e.g. $x - 2 =$				
		or corresponding correct linear inequality, e.g. $x - 2 \ge -x - 5$		M1		
		Obtain critical value $-\frac{3}{2}$		A1		
		State correct answer $x \le -\frac{3}{2}$		A1	[3]	
		State context answer $x \le -\frac{1}{2}$		211	[2]	
2	Use law for	the logarithm of a product, a quotient or a power		M1*		
		$5 = (2x - 1) \log 3$ or equivalent		A1		
	Solve for <i>x</i>			M1(dep*)		
	Obtain answ	er x = 1.87		A1	[4]	
3		nt use of the $\cos 2\theta$ formula		M1		
		rect quadratic in $\cos \theta$ lratic in $\cos \theta$		A1 M1		
		er $\theta = 60$ and no others in the range		Al	[4]	
		vers outside the given range)				
	(i) Get d	$x - 2$ dy $2x^{-2}$		D1		
4	(i) State $\frac{d}{d}$	$\frac{dx}{dt} = \frac{-2}{1-2t}$ or $\frac{dy}{dt} = -2t^{-2}$		B1		
	Use $\frac{dy}{dy}$	$=\frac{\mathrm{d}y}{\mathrm{d}t}\div\frac{\mathrm{d}x}{\mathrm{d}t}$		M1		
	Obtain	given answer correctly		A1	[3]	
	(ii) Equate	derivative to 3 and solve for t		M1		
	State or	imply that $t = -1$ c.w.o.		A1		
	Obtain	coordinates (ln 3, -2)		A1	[3]	

				9709 w12 ms 2		
	Page 5		Mark Scheme	Syllabus	Paper	
			GCE AS LEVEL – October/November 2012	9709	21	
5	(i)	Attempt t Obtain 1–	o integrate and use limits θ and π		M1	[2]
	(ii)		area of rectangle = $\theta \cos \theta$, equate area of rectangle to area of	R	A1	[2]
		and rearra	ange to given equation		B1	[1]
	(iii)	Obtain fir	erative formula correctly at least once hal answer 0.56 ficient iterations to justify its accuracy to 2 d.p. or show there	is a	M1 A1	
			ge in the interval (0.555, 0.565)	15 a	B1	[3]
6	(a)		mply correct ordinates 0.125, 0.08743, 0.21511 tect formula, or equivalent, correctly with $h = 0.5$ and three ord	inates	B1 M1	
			swer 0.11 with no errors seen		A1	[3]
	(b)	Attempt t	to expand brackets and divide by e^{2x} a term of form ke^{-x} or ke^{-2x} correctly		M1 A1√	
			correct terms		Al	
			rect integral $x + 4e^{-x} - 2e^{-2x} + c$		A1	[4]
7	(i)		e $x = -1$, equate to zero and obtain a correct equation in any for $x = 3$ and equate to 12	orm	B1 M1	
		Obtain a o	correct equation in any form		A1	
			elevant pair of equations for <i>a</i> or for <i>b</i>		M1	
	(;;)		= -4 and $b = 6$ division by $x^2 - 2$ and reach a partial quotient of $2x - k$		A1 M1	[5]
	(11)	-	notion by $x = 2$ and reach a partial quotient of $2x - k$ notion $2x - 4$		A1	
		-	mainder -2		A1	[3]
8	(i)		iate using chain or quotient rule rivative in any correct form		M1 A1	
			ven answer correctly		A1 A1	[3]
	(ii)		iate using product rule		M1	
			vative of $\tan \theta = \sec^2 \theta$ dentity $1 + \tan^2 \theta = \sec^2 \theta$ correctly		B1 M1	
			$ec^3 \theta - \sec \theta$		A1	[4]
	(iii)		$x = \sec^2 \theta - 1$ to integrate $\tan^2 x$		M1	
			ec θ from integration of 3sec θ tan θ		B1	
			n θ – 3sec θ o substitute limits, using exact values		A1 M1	
		-	is substitute films, using exact values is set $4 - 3\sqrt{2}$		Al	[5]