Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9709	12

1	$\left(x^{2}-\frac{a}{x}\right)^{7}$ Term in x^{5} is ${ }_{7} \mathrm{C}_{3} \times\left(x^{2}\right)^{4} \times(-a / x)^{3}$ This term isolated Equated to $-280 \rightarrow a=2$.	B1 M1 A1 [3]	Allow on own or in an expansion. Correct term in x^{5} selected. Equated to - 280
2	(i) $\mathrm{f}(x)=\sqrt{\frac{x+3}{2}}+1$, for $x \geq-3$ Make x the subject or interchanges x, y $\begin{aligned} & \rightarrow 2(x-1)^{2}-3 \\ & \rightarrow 2 x^{2}-4 x-1 \end{aligned}$ (ii) domain of f^{-1} is ≥ 1.	M1 M1 A1 [3] B1 [1]	Attempt at x as subject and removes +1 Squares both sides and deals with " +3 " and " $\div 2$ ". co co. condone >1
3	(i) $\begin{aligned} & A=2400-20(60-2 x)-x(40-x)-30 x \\ & \rightarrow A=x^{2}-30 x+1200 . \\ & \text { (could be trapezium - triangle) } \end{aligned}$ (ii) $\begin{aligned} & \frac{\mathrm{d} A}{\mathrm{~d} x}=2 x-30 \text { or }(x-15)^{2}+975 \\ & =0 \text { when } x=15 \text { or Min at } x=15 \\ & \rightarrow A=975 . \end{aligned}$	M1 A1 [2] B1 M1 A1 [3]	Needs attempts at all areas co answer given co - either method okay Sets differential to $0+$ solution. co co.
4	$y=\frac{x}{k}+k \quad 4 y=x^{2}$ (i) $\frac{x^{2}}{4}=\frac{x}{k}+k \rightarrow k x^{2}-4 x-4 k^{2}=0$ Uses $b^{2}-4 a c \rightarrow k=-1$ (calculus $\frac{1}{k}=\frac{2 x}{4} \quad$ B1 $\left.\rightarrow x=\frac{2}{k}, y=\frac{1}{k^{2}} \mathrm{M} 1 \rightarrow k=-1 \mathrm{~A} 1\right)$ (ii) $\begin{aligned} & y=-x-1,4 y=x^{2} \\ & \rightarrow x^{2}+4 x+4=0 \\ & \rightarrow P(-2,1) \end{aligned}$		Eliminates x or y completely. Uses $b^{2}-4 a c$ for a quadratic $=0$ co nb a, b, c must not be $\mathrm{f}(x)$ Elimination of x or y Soln of eqn. co.

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	$\mathbf{1 2}$

5	$A(1,3), B(5,11), X(4,4)$ (i) Gradient of $A B=2$ Gradient of $B C=-1 / 2$ \rightarrow Eqn of $B C$ is $y-11=-\frac{1}{2}(x-5)$ (ii) gradient of $A C$ (or $A X)$ is $1 / 3$ \rightarrow eqn of $A C$ is $y-3=\frac{1}{3}(x-1)$ or $y-4=\frac{1}{3}(x-4)$ Sim equations $\rightarrow C(13,7)$		co For use of $m_{1} m_{2}=-1$ co - unsimplified is fine co Correct form of line equation + sim eqns co answer only $-0 / 3$ - assumed $A B=B C$. Uses graph or table and gets exactly $(13,7)$ allow the 3 marks for (ii).
6	$2 \cos x=3 \tan x$ (i) Replaces $\tan x$ by $\sin x \div \cos x$ $\rightarrow 2 c^{2}=3 \mathrm{~s} \rightarrow 2 s^{2}+3 s-2=0$ (ii) Soln of quadratic $\begin{aligned} & \rightarrow y=15^{\circ} \\ & 2 y \text { can also be } 180-30 \\ & \rightarrow y=75^{\circ} . \end{aligned}$	M1 M1 A1 [3] M1 A1 DM1 A1f [4]	Uses $t=s \div c$ Uses $s^{2}+c^{2}=1$. Correct eqn . Method for quadratic $=0$ and $\div 2$ co Works with $2 y$ first before $\div 2$ for $90^{\circ}-1^{\text {st }}$ answer. (loses $\sqrt{ }$ mark if extra soln in range)
7	$\begin{aligned} & \overrightarrow{O A}=\left(\begin{array}{l} 1 \\ 0 \\ 2 \end{array}\right) \quad \overrightarrow{O B}=\left(\begin{array}{c} k \\ -k \\ 2 k \end{array}\right) \\ & \text { (i) } \quad\left(\begin{array}{l} 1 \\ 0 \\ 2 \end{array}\right) \cdot\left(\begin{array}{c} 2 \\ -2 \\ 4 \end{array}\right)=10 \\ &=\sqrt{ } \times \sqrt{ } 24 \cos \theta \\ & \rightarrow \theta=24.1^{\circ} \end{aligned}$ (ii) $\begin{aligned} & \overrightarrow{A B}=\left(\begin{array}{c} k-1 \\ -k \\ 2 k-2 \end{array}\right) \text { allow each cpt } \pm \\ & (k-1)^{2}+k^{2}+(2 k-2)^{2} \\ & \rightarrow 6 k^{2}-10 k+4=0 \\ & \rightarrow k=1 \text { or } 2 / 3 \end{aligned}$	M1 A1 [4] M1 M1 A1 A1 [4]	Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ Product of 2 moduli All connected correctly. co Correct for either AB or $\mathbf{B A}$. Sum of 3 squares (doesn't need $=1$) Correct quadratic co

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9709	12

8	(a) (i) $a r=24, a r^{3}=13^{1 / 2}$ $\text { Eliminates } a \text { (or } r \text {) } \rightarrow r=3 / 4$ $\rightarrow a=32$ (ii) sum to infinity $=32 \div 1 / 4=128$ $\text { (b) } \begin{aligned} & a=3, d=2 \\ & \frac{n}{2}(6+(n-1) 2) \quad(=360) \\ & \rightarrow 2 n^{2}+4 \mathrm{n}-720=0 \\ & \rightarrow n=18 \end{aligned}$	B1 M1 A1 [3] M1A1 [2] B1 M1 A1 A1 [4]	Both needed Method of Solution. co Correct formula used. \downarrow on value of r Correct value for d Correct S_{n} used. no need for 360 here. Correct quadratic co
9	$y=\frac{9}{2 x+3} \quad A(3,1) \quad B(0,3)$ (i) $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-9}{(2 x+3)^{2}} \times 2 \\ & \rightarrow m=-\frac{2}{9} \\ & \rightarrow y-1=-\frac{2}{9}(x-3) \end{aligned}$ (ii) Meets the y-axis when $x=0, y=12 / 3$ This is nearer to B than to O. (iii) Integral of $\frac{81}{(2 x+3)^{2}}=\frac{-81}{2 x+3} \div 2$ Uses limits 0 to $3 \rightarrow \frac{-9}{2}-\frac{-81}{6}=9 \pi$		Correct without the $\times 2$. For $\times 2$, independent of first part. Correct form of \tan - numerical $\mathrm{d} y / \mathrm{d} x$ For his m following use of $\mathrm{d} y / \mathrm{d} x$. (normal $\rightarrow \max 2 / 4$, no calculus $0 / 4$) Sets x to 0 in his tangent. The $12 / 3$ and part (i) must be correct. Correct without the $\div 2$. For $\div 2$, Use of limits with integral of y^{2} only no $\pi-\max 3 / 4$. Use of area $-0 / 4$,

Page 7 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2012	9709	12

10	$\frac{\mathrm{dy}}{\mathrm{d} x}=x+\frac{4}{x^{2}}$ and $P(4,8)$ (i) $y=\frac{x^{2}}{2}-\frac{4}{x}+(c)$ Uses $(4,8) \quad \rightarrow c=1$ (ii) $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}=1-\frac{8}{x^{3}}$ $=0$ when $x=2$ \rightarrow gradient of 3 $\mathrm{d} / \mathrm{d} x\left(1-\frac{8}{x^{3}}\right)=\frac{24}{x^{4}} \rightarrow+\mathrm{ve} \rightarrow$ Min.	B1 B1 M1 A1 [4] B1 B1 B1 B1 [4]	co.co (ignore $+c$ at this stage) Uses the point after integration for c Co Sets to $0+$ solution or verifies and states a conclusion (stationary or min) Allow for $x=2$ into $\mathrm{d} y / \mathrm{d} x$. Any valid method - 3rd differential +ve 2 nd diff goes $-0+$, or 1st goes $>3,3,>3$
11	(i) $O Q=x+O C=20$ $\begin{aligned} & \sin 0.6=\frac{x}{O C} \rightarrow O C=\frac{x}{\sin 0.6} \\ & x+\frac{x}{\sin 0.6}=20 \rightarrow x=7.218 \end{aligned}$ (ii) Area $=1 / 2.20^{2} \times 1.2-\pi \times 7.218^{2}$ $=76.3$ (iii) Angle $P C R=\pi-1.2$ Arc $P R=7.218 \times(\pi-1.2)=(14.01)$ $O P=O R=\frac{x}{\tan 0.6}$ \rightarrow Perimeter of 35.1 cm	M1 A1 [4] M1 A1 [2] B1 M1 M1 A1 [4]	Used somewhere - needs " 20 ". Use of trig in 90° triangle Soln of linear equation. (answer given, ensure there is a correct method) Use of $1 / 2 r^{2} \theta$ - needs $r=20$ and $\theta=1.2$ co co Use of $s=r \theta$ with $r=7.218$-any θ-even $2 \pi / 3$ Correct use of trig or Pythagoras co

