	Page 4	Mark Scheme			Syllabus	Paper		
		GCE AS/A LEVEL – October/November 2012			9709	12		
1	$\left(x^2 - \frac{a}{x}\right)^7$ Term in x^5 is This term iso Equated to -2	$_{7}C_{3} \times (x^{2})^{4} \times (-a/x)^{3}$ lated 280 $\rightarrow a = 2.$	B1 M1 A1 [3]	Allow on Correct te Equated to	Allow on own or in an expansion. Correct term in x^5 selected. Equated to -280			
2	(i) $f(x) =$ Make: $\rightarrow 2(x)$ (ii) domain	$\sqrt{\frac{x+3}{2}} + 1, \text{ for } x \ge -3$ x the subject or interchanges x,y $x-1)^2 - 3$ $x^2 - 4x - 1$ n of f ⁻¹ is > 1.	M1 M1 A1 [3]	Attempt a Squares be and "÷2". co	t x as subject an oth sides and de	d removes +1 als with "+3"		
	()		ы [1]	co. condone >1				
3	(i) $A = 24$ $\rightarrow A =$ (could (ii) $\frac{dA}{dx} =$ = 0 wit $\rightarrow A =$	$\begin{array}{l} 400 - 20(60 - 2x) - x(40 - x) - 30x \\ = x^2 - 30x + 1200. \\ \text{be trapezium - triangle} \end{array}$ $\begin{array}{l} 2x - 30 \text{or } (x - 15)^2 + 975 \\ \text{hen } x = 15 \text{or Min at } x = 15 \\ = 975 \ . \end{array}$	M1 A1 [2] B1 M1 A1 [3]	Needs atte co answe co - either Sets differ co.	empts at all area r given r method okay rential to 0 + sol	s ution. co		
4	$y = \frac{x}{k} + k 4$ (i) $\frac{x^2}{4} = \frac{1}{2}$ Uses b (calcult) $\rightarrow x = \frac{1}{2}$	$by = x^{2}$ $\frac{x}{k} + k \rightarrow kx^{2} - 4x - 4k^{2} = 0$ $e^{2} - 4ac \rightarrow k = -1$ $bus \frac{1}{k} = \frac{2x}{4} B1$ $\frac{2}{k}, y = \frac{1}{k^{2}} M1 \rightarrow k = -1 \text{ A1}$	M1 M1 A1 [3]	Eliminates Uses <i>b</i> ² – co nb <i>a,b</i> ,	s <i>x</i> or <i>y</i> complete 4 <i>ac</i> for a quadr , <i>c</i> must not be f(ely. tatic = 0 (x)		
	(ii) $y = -x$ $\rightarrow x^2$ $\rightarrow P(-x)$	$x - 1, 4y = x^{2}$ + 4x + 4 = 0 -2, 1)	M1 M1 A1 [3]	Eliminatic Soln of eq	on of x or y n. co.			

<u>9709_w12_ms_12</u>

						<u>9709 w12 ms 12</u>			
Page 5		Ma	Mark Scheme				Paper		
		GCE AS/A LEVEL -	- October/	/November	2012	9709	12		
5	 A (1, 3), B (i) Gradie Gradie → Eq (ii) gradien → eqn Sim eq 	B (5, 11), X (4, 4) ent of AB = 2 ent of BC = -½ n of BC is $y - 11 = -\frac{1}{2}(x)$ ent of AC (or AX) is ⅓ of AC is $y - 3 = \frac{1}{3}(x - 1)$ or $y - 4 = \frac{1}{3}(x - 4)$ puations → C (13,7)	- 5)	B1 M1 A1 [3] B1 M1 A1 [3]	co For use of $m_1m_2 = -1$ co – unsimplified is fine co Correct form of line equation + sim equator co answer only -0/3- assumed $AB = BC$. Uses graph or table and gets exactly (13,7) allow the 3 marks for (ii).				
6	$2\cos x = 3\tan (i)$ Replac	$\frac{1}{2} x = \frac{1}{2} x + \frac{1}$		M1	Uses $t = s \div c$ Uses $s^2 + c^2 = 1$. Correct eqn.				
	$\rightarrow 2c^2$	$z = 3s \rightarrow 2s^2 + 3s - 2 = 0$		M1 A1 [3]					
	(ii) Soln of $\rightarrow v =$	f quadratic		M1 A1	Method fo	or quadratic $= 0$	and ÷2		
	$2y \operatorname{can} \rightarrow y =$	also be $180 - 30$ = 75°.		DM1 A1√ [4]	Works with for $90^{\circ} - 10^{\circ}$ (loses \sqrt{m}	th 2 <i>y</i> first before 1 st answer. hark if extra soln	e÷2 in range)		
7	$\overrightarrow{OA} = \begin{pmatrix} 1\\0\\2 \end{pmatrix}$	$\overrightarrow{OB} = \begin{pmatrix} k \\ -k \\ 2k \end{pmatrix}$							
	(i) $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$.	$\begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix} = 10$		M1	Use of $x_1 x$	$x_2 + y_1y_2 + z_1z_2$			
	$\begin{array}{c} (-) \\ = \sqrt{5} \\ \rightarrow \theta \end{array}$	< √24 cos θ = 24.1°		M1 M1 A1 [4]	Product of All conne	f 2 moduli cted correctly. co	0		
	(ii) $\overrightarrow{AB} =$	$\begin{pmatrix} k-1\\ -k\\ 2k-2 \end{pmatrix}$ allow each cpt ±	:	M1	Correct fo	or either AB or B	3 A .		
	(k-1) $\rightarrow 6^{k}$	$k^{2} + k^{2} + (2k - 2)^{2}$ $k^{2} - 10k + 4 = 0$		M1 A1	Sum of 3 Correct qu	squares (doesn't ladratic	need =1)		
	$\rightarrow k =$	$= 1 \text{ or } \frac{2}{3}$		AI [4]	co				

	9709 w12 mg						
Page 6		Mark Scheme			Syllabus	Paper	
		GCE AS/A LEVEL – October	CE AS/A LEVEL – October/November 2012			12	
8	(a) (i) <i>an</i> El — (ii) su	$r = 24, ar^3 = 13\frac{1}{2}$ liminates a (or r) $\rightarrow r = \frac{3}{4}$ $\Rightarrow a = 32$ um to infinity = $32 \div \frac{1}{4} = 128$	B1 M1 A1 [3] M1A1√ [♣] [2]	Both needed Method of Solution. co Correct formula used. \checkmark^{h} on value of r			
	(b) $a = 3$,	<i>d</i> = 2	B1	Correct value for <i>d</i>			
	$\frac{n}{2}(6+) \rightarrow 2n$ $\rightarrow n = -$	(n-1)2) (= 360) $x^{2} + 4n - 720 = 0$ = 18	M1 A1 A1 [4]	Correct S_n used. no need for 360 here. Correct quadratic co			
9	$y = \frac{9}{2x+3}$	A(3,1) B(0,3)					
	(i) $\frac{dy}{dx} = \frac{1}{(x-y)^2}$ $\rightarrow m = \frac{1}{(x-y)^2}$	$\frac{-9}{2x+3)^2} \times 2$ = $-\frac{2}{9}$ $-1 = -\frac{2}{9}(x-3)$	B1 B1 M1 A1√ [*] [4]	Correct w independe Correct fo For his <i>m</i> (normal –	ithout the ×2. For ent of first part. form of tan - nume following use of \rightarrow max 2/4, no cal	or $\times 2$, erical dy/dx dy/dx. culus 0/4)	
	(ii) Meets This is	the <i>y</i> -axis when $x = 0$, $y = 1^{2/3}$ nearer to <i>B</i> than to <i>O</i> .	B1 [1]	Sets x to 0 The $1^{2/3}$ a) in his tangent. nd part (i) must	be correct.	
	(iii) Integra Uses li	al of $\frac{81}{(2x+3)^2} = \frac{-81}{2x+3} \div 2$ mits 0 to 3 $\rightarrow \frac{-9}{2} - \frac{-81}{6} = 9\pi$	B1 B1 M1 A1 [4]	Correct w Use of lim no π – ma	ithout the \div 2. F nits with integral x ³ / ₄ . Use of area	For $\div 2$, of y^2 only a - $0/4$,	

	Page 7		Mark Scheme			Syllabus	Paper		
			GCE AS/A LEVEL – October/November 2012			9709	12		
10	$\frac{\mathrm{d}y}{\mathrm{d}x} = x + \frac{2}{x}$	$\frac{4}{x^2}$ and	d P (4, 8)						
	(i) y =	i) $y = \frac{x^2}{2} - \frac{4}{x} + (c)$			co.co (igr	o (ignore $+c$ at this stage)			
	Use	ses (4	$(8) \rightarrow c = 1$	M1 A1 [4]	Uses the p	ooint after integr	ation for <i>c</i>		
	(ii) $\frac{d^2}{dx}$	$\frac{y}{x^2} = \frac{1}{2}$	$1-\frac{8}{x^3}$	B1	Co				
	= 0	= 0 when $x = 2$		B1	Sets to 0 - a conclusi	to $0 + $ solution or verifies and states clusion (stationary or min)			
	\rightarrow	grad	ient of 3 8 24	B1	Allow for	x = 2 into dy/dx			
	d/d.	dx(1-	$\left(-\frac{\delta}{x^3}\right) = \frac{24}{x^4} \rightarrow +ve \rightarrow Min.$	B1 [4]	Any valid 2nd diff g	method - 3rd di oes $-0+$, or 1st g	fferential +ve goes >3,3,>3		
11	(i) <i>OQ</i>	Q = x	+ OC = 20	D1	Used som	awhana naada	" ``		
			Y Y	ы	Used som	ewnere – needs	20.		
	sin	n 0.6	$=\frac{x}{OC} \rightarrow OC = \frac{x}{\sin 0.6}$	M1	Use of trig	g in 90° triangle			
	<i>x</i> +	$+\frac{1}{\sin}$	$\frac{x}{0.6} = 20 \rightarrow x = 7.218$	M1 A1 [4]	Soln of lir ensure the	near equation. (a ere is a correct m	nswer given, nethod)		
	(ii) Are = 7	rea = 76.3	$\frac{1}{2}$. 20 ² × 1.2 – π × 7.218 ²	M1 A1 [2]	Use of ½r co	$^{2}\theta$ - needs $r=20$	and $\theta = 1.2$		
	(iii) An Arc	ngle <i>I</i> rc <i>PR</i>	$PCR = \pi - 1.2$ = 7.218 × (\pi - 1.2) = (14.01)	B1 M1	co Use of $s = 2\pi/3$	$r\theta$ with $r = 7.21$	8 -any θ -even		
	OF	P = C	$DR = \frac{x}{\tan 0.6}$	M1 A1	co	se of trig or Pyth	agoras		
	\rightarrow	Peri	meter of 35.1 cm	[4]					

9709_w12_ms_12