	Dava 4 Mark Sahama				9709 w12 ms 11			
	raye 4	Page 4 Mark Scheme GCE AS/A LEVEL – October/November 2012			0700	raper 11		
		/110 VEILIDE	1 2012	3103	11			
1	$\frac{n}{2}[122 + (n - n)]{n} = \frac{n}{2}[122 + (n - n)]{n}$	$[122 + (n - 1)(-4)] = \frac{n}{n} [122 + (n - 1)(-4)]$		Attempt s	sum formula with $a = 61, d = -4$			
	$n = \frac{1}{2} [122 + (n - 1)(-1)]$ 2n(n = 31) = 0							
	n = 31	0		Attempt to	o solve. Accept	div. by <i>n</i>		
			[4]	Cao				
2	$y = \frac{4}{3} - x$ (-	+c)	M1A1	Attempt in	ntegration. cao			
	$\operatorname{Sub}(2, 4) \rightarrow 0$	c = 5	DM1A1	Dependen	t on c present			
			[4]					
3	$A = \pi r^2 \rightarrow (\frac{c}{r})^2$	$\left(\frac{\mathrm{l}A}{\mathrm{l}A}\right) = 2\pi r$	B1					
0	$dA = dA \int dr$	lr ²	M1					
	$\frac{dt}{dt} = \frac{dr}{dr} \wedge \frac{dt}{dt}$	useu	R1					
	$\frac{1}{dt} = 3 \text{ sol}$	X	A 1					
	300π (or 942))	AI [4]					
4	(i) $(2x - x^2)$	$0^6 = 64x^6 - 192x^7 + 240x^8$	B1B1B1	cao				
	(ii) $\times (2 + x)$	coeff of $x^8 = 2 \times 240 - 192$	M1	Looks at e	exactly 2 terms			
	288		A1√		2			
			[2]					
5	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 - 2(x + 1)$	$(-1)^{-3}$	B2,1,0	-1 each er	rror in 2, -2 , ($x -$	$(-1)^{-3}$		
	Sub $x = 2 \rightarrow \frac{dx}{d}$	$\frac{y}{x} = 2 - 2 = 0 \Rightarrow$ stat value at $x = 2$	B1	AG				
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6(x-1)$	$)^{-4}$ (and sub <i>x</i> = 2)	M1	Reasonab	le attempt to diff	form $(x-1)^{-n}$		
	$(At x = 2 \frac{d^2 y}{d^2 y})$	$= 6$ > 0 \Rightarrow Minimum	A 1	Correct d	$\frac{2^{2}y}{2}$ and 'minimur	n' is required		
	dx^2 , dx^2	o) v o v minimum	AI [5]	dr other	x^2 and method for	last 2 marks		
				Of other		last 2 marks		
6	(i) $AC = r - $	$r\cos\theta$	B1					
	(ii) are $AB =$	4π	[1]					
	(ii) are $AD =$	$\frac{1}{3}$ $\frac{\pi}{3}$ × theorem $AC = \frac{\pi}{3}$ × (A)	BI	A 11 arra - A	(their AC for)	(1) 11		
	$A \cos^{\pi}$	$\frac{1}{2} \times (1000 \text{ AC} - \frac{1}{2} \times (4 - 1000 \text{ AC} - \frac{1}{2} \times (4 - 100$	MIAI	Allow <i>n</i> >	<i>Clietr</i> AC for W	11. Allow 5.14		
	BD = 4s	$in\frac{\pi}{2} - their AC = 2\sqrt{3} - 2$	M1A1	Allow 1 4	.6			
	Perimeter	$-\frac{7\pi}{2} + 2\sqrt{3} - 2$	A 1		$\frac{1}{2}$			
	i chineter	$\frac{1}{3}$	AI [6]	cao A	ccept V12			
7	(i) $2(1 - \sin \theta)$	$^{2}\theta) - 3\sin\theta$	M1	Use $c^2 \perp$	$s^2 - 1$			
'	(1) $2(1 - \sin\theta)$ ($2\sin\theta - \theta$	$(1)(\sin\theta + 2) = 0$	M1	Attempt to	o solve			
	$\dot{\theta} = 30^{\circ} \mathrm{c}$	or 150°	A1A1	cao				
	their	30	[4]	o · · ·	1 • • · ·			
	(ii) $n = \frac{net}{10}$	$\frac{33}{2} = 3$	BI√	tt provide	d <i>n</i> is an integer			
	(their 3)	$\theta = 720 + their 150 = 870$	M1	Allow ful	l list up to at leas	st 870		
	$\sigma = 290^{\circ}$		AI [3]	cao				
1			[~]					

								<u>9709_w12_ms_11</u>		
Page 5		ge 5	Mark Scheme				Syllabus	Paper		
			GCE AS/A LEVEI	L – October	/Nove	mbe	r 2012	9709	11	
					1		1			
8	(i)	$y^{2} = 3y \Rightarrow y(y - 3) = 0 \Rightarrow y = 3 \text{ (or } 0)$			M1	M1 OR form equation in x an solution			d attempt	
		$x = \frac{1}{2}$ or	5 $(\Rightarrow a = 5)$	AG	Al	[2]	OR sub <i>x</i> (A1) (5,3) subs	=5 each eq (M1) st only once scor	$y \rightarrow y = 3$ (twice) es 0/2	
	(ii)	$\begin{bmatrix} (2x-1)^{\frac{3}{2}} \\ \frac{3}{2} \end{bmatrix}$	$[\div 2], \qquad \left[\frac{2}{3} \times \frac{x^2}{2} - \frac{x}{3}\right]$	<u>[</u>] 1\]	B1B1	B 1	Or $\Delta = \frac{1}{2}$	$(5 - \frac{1}{2}) \times 3$		
		$\left[\frac{2i}{3}-0\right],$	$\left[\frac{23}{3} - \frac{3}{3} - \left(\frac{1}{12} - \frac{1}{12}\right)\right]$	$\left[\frac{1}{6}\right]$	M1		Apply lin	nits $\frac{1}{2}$ and 5 for,	at least, curve	
		$\frac{9}{4}$ oe	ireas at some stage		M1 A1	[6]	Depender cao $9/4$ 9 - 27/4 =	nt on some integr with no working = 9/4 scores 1/6	ration g scores 0/6, but (M1 subtraction)	
						[•]			(
9	(i)	$\overrightarrow{CD} = -3$	$ \begin{pmatrix} 2\\1\\2 \end{pmatrix} + 2 \begin{pmatrix} 4\\0\\6 \end{pmatrix} = \begin{pmatrix} 2\\-3\\6 \end{pmatrix} $		B1					
	Uni	Unit vector $=\frac{1}{7}\begin{pmatrix}2\\-3\\6\end{pmatrix}$			M1A	1 [3]	Allow M1A1 for $\frac{1}{7} \begin{pmatrix} -2 \\ 3 \\ -6 \end{pmatrix}$ or $(\frac{2}{7} - \frac{3}{7} - \frac{6}{7})$ et			
	(ii)	$\overrightarrow{OE} = \begin{pmatrix} 6\\3\\6 \end{pmatrix}$	$ + \begin{pmatrix} 1 \\ -1\frac{1}{2} \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 1\frac{1}{2} \\ 9 \end{pmatrix} $		M1A1	1	or equivat	lent method		
		$\overrightarrow{OE}.\overrightarrow{OD} =$	56 + 0 + 108 = 164	$1 - \sqrt{208}$	M1 M1		Use of x_1	$x_2 + y_1 y_2 + z_1 z_2$	Z ₂	
			(152.25 (-11.5); 0)	- V208			Correct m	nethod for modul	ll Naman dan tau	
		$164 = \sqrt{13}$	$32.25 \times \sqrt{208} \times \cos \theta$				$\rightarrow \rightarrow $	\rightarrow \rightarrow \rightarrow	Dependent on	
		$\theta = 8.6^{\circ}$	cao		AI	[6]	0E,EO,C	DD, DO used		
10		$A(x 2)^2$	2 25		D1D1	D1	Or a = 4	b - 2 c'	25	
10	(1)	4(x - 3) Vertex is	(3, -25)		B1	DI	ft to <i>their</i>	(b, c). Accept i	f not 'hence'	
	(ii)	range is ($g(x) \ge -9$ Allow >		B1B1	[4] [2]	B1 for \geq ,	, B1 for –9 A	accept e.g. [−9,∞]	
	(iii)	$(x - 3)^2$	$=\frac{1}{4}(y+25)$		M1					
		x - 3 = ($(\pm)\frac{1}{2}\sqrt{y+25}$		DM1		Attempt t	o square root bo	th sides	
		$g^{-1}(x) =$	$3 - \frac{1}{2}\sqrt{x + 25}$		A1		cao			
		Domain is	$5 x \ge -9$		B 1√	[4]	ft from <i>th</i>	eir (ii)		

						9709	<u>9 w12 ms 1</u>	
	Page 6		Mark Sche	Syllabus	Paper			
			GCE AS/A LEVEL – Octob	AS/A LEVEL – October/November 2012			11	
11	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = [6]$	$\times \left[\frac{1}{3}(6x+2)^{-\frac{2}{3}}\right]$	B1B1	Independe	ent		
		Equation	of tangent is $y - 2 = m(x - 1)$	M1	Where $m =$ numerical $\frac{dy}{dx}$			
		Equation of normal is $y - 2 = -\frac{1}{m}(x - 1)$			Including use of $m_1 m_2^{\text{ux}} = -1$			
		Both equa	s correct with $m = \frac{1}{2}$ cao	A1	SC 1/3 Blatant tangent/normal reversal			
	(ii)	$B = (0, \frac{11}{2})$	$C_{2}; C = (2, 0)$	[5] B1	Both cao			
		$BC = \sqrt{2^2}$	$2^{2} + (1\frac{1}{2})^{2} = 2\frac{1}{2}$	M1A1√	ft from the	eir B and C		
	(iii)	(iii) BC: $y - 1\frac{1}{2} = -\frac{3}{4}(x - 0)$ or		[3] M1	or $y = -\frac{3}{4}x + 1\frac{1}{2}$			
		$y = -\frac{3}{4}($	(x - 2)	M1		4 2		
		Intersectio	on (E): $-\frac{3}{4}x + 1\frac{1}{2} = 2x$	A1	cao			
		$x = \frac{6}{11};$ Mid-point	$y = \frac{12}{11}$ t of $QA = (\frac{1}{2}, 1) \rightarrow E$ not mid-point	B1 [4]	Dependent for both <i>E</i>	t on correct x va and the mid-poi	lues or <i>y</i> values int of <i>OA</i>	
		ning point				1		