Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9709	11

$\begin{array}{ll} 1 & \frac{n}{2}[122+(n-1)(-4)] \\ & n=\frac{n}{2}[122+(n-1)(-4)] \\ & 2 n(n-31)=0 \\ & n=31 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { DM1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	Attempt sum formula with $a=61, d=-4$ Equated to n cao Attempt to solve. Accept div. by n cao
$2 \begin{array}{ll} & y=\frac{4}{x^{2}}-x \quad(+c) \\ & \operatorname{Sub}(2,4) \rightarrow c=5 \end{array}$	M1A1 DM1A1	Attempt integration. cao Dependent on c present
$3 \begin{aligned} & A=\pi r^{2} \rightarrow\left(\frac{\mathrm{~d} A}{\mathrm{~d}}\right)=2 \pi r \\ & \frac{\mathrm{~d} A}{\mathrm{~d} t}=\frac{\mathrm{d} A}{\mathrm{~d} r} \times \frac{\mathrm{d} r}{\mathrm{~d} t} \text { used } \\ & \frac{\mathrm{d} r}{\mathrm{~d} t}=3 \text { soi } \\ & 300 \pi \text { (or } 942 \text {) } \end{aligned}$	B1 M1 B1 A1 [4]	
4 (i) $\left(2 x-x^{2}\right)^{6}=64 x^{6}-192 x^{7}+240 x^{8}$ $\text { (ii) } \times(2+x) \text { coeff of } x^{8}=2 \times 240-192$ 288	$\begin{array}{\|cc} \hline \text { B1B1B1 } \\ & {[3]} \\ \text { M1 } & \\ \text { A1 } \checkmark & \\ & \\ & {[2]} \end{array}$	cao Looks at exactly 2 terms
$5 \begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2-2(x-1)^{-3} \\ & \text { Sub } x=2 \rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=2-2=0 \Rightarrow \text { stat value at } x=2 \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=6(x-1)^{-4}(\text { and sub } x=2) \\ & \left(\text { At } x=2, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=6\right) \quad>0 \Rightarrow \text { Minimum } \end{aligned}$	B2,1,0 B1 M1 A1 [5]	-1 each error in $2,-2,(x-1)^{-3}$ AG Reasonable attempt to diff form $(x-1)^{-n}$ Correct $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and 'minimum' is required Or other valid method for last 2 marks
6 (i) $A C=r-r \cos \theta$ $\text { (ii) } \begin{aligned} & \operatorname{arc} A B=\frac{4 \pi}{3} \\ & \operatorname{arc} A D=\frac{\pi}{2} \times \text { their } A C=\frac{\pi}{2} \times(4- \\ & \left.4 \cos \frac{\pi}{3}\right)=\pi \\ & B D=4 \sin \frac{\pi}{3}-\text { their } A C=2 \sqrt{3}-2 \\ & \text { Perimeter }=\frac{7 \pi}{3}+2 \sqrt{3}-2 \end{aligned}$	[1] B1 M1A1 M1A1 A1 [6]	Allow $\pi \times$ their $A C$ for M1. Allow 3.14 Allow 1.46 cao Accept $\sqrt{ } 12$
7 (i) $\begin{aligned} & 2\left(1-\sin ^{2} \theta\right)=3 \sin \theta \\ & (2 \sin \theta-1)(\sin \theta+2)=0 \\ & \theta=30^{\circ} \text { or } 150^{\circ} \end{aligned}$ (ii) $\begin{aligned} & n=\frac{\text { their } 30}{10}=3 \\ & (\text { their } 3) \theta=720+\text { their } 150=870 \\ & \theta=290^{\circ} \end{aligned}$	$$	Use $c^{2}+s^{2}=1$ Attempt to solve cao ft provided n is an integer Allow full list up to at least 870 cao

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2012	$\mathbf{9 7 0 9}$	$\mathbf{1 1}$

8 (i) $\begin{aligned} & y^{2}=3 y \Rightarrow y(y-3)=0 \Rightarrow y=3(\text { or } 0) \\ & x=\frac{1}{2} \text { or } 5 \quad(\Rightarrow \mathrm{a}=5) \quad \text { AG } \end{aligned}$ (ii) $\begin{gathered}{\left[\frac{(2 x-1)^{\frac{3}{2}}}{\frac{3}{2}}\right][\div 2], \quad\left[\frac{2}{3} \times \frac{x^{2}}{2}-\frac{x}{3}\right]} \\ {\left[\frac{27}{3}-0\right],}\end{gathered}\left[\frac{25}{3}-\frac{5}{3}-\left(\frac{1}{12}-\frac{1}{6}\right)\right]$. Subtract areas at some stage $\frac{9}{4}$ oe	M1 A1 [2] B1B1B1 M1 M1 A1 [6]	OR form equation in x and attempt solution OR sub $x=5$ each eq (M1) $\rightarrow y=3$ (twice) (A1) $(5,3)$ subst only once scores $0 / 2$ $\text { Or } \Delta=1 / 2(5-1 / 2) \times 3$ Apply limits $1 / 2$ and 5 for, at least, curve Dependent on some integration cao $9 / 4$ with no working scores $0 / 6$, but $9-27 / 4=9 / 4$ scores $1 / 6$ (M1 subtraction)
9 (i) $\quad \overrightarrow{C D}=-3\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)+2\left(\begin{array}{l}4 \\ 0 \\ 6\end{array}\right)=\left(\begin{array}{c}2 \\ -3 \\ 6\end{array}\right)$ Unit vector $=\frac{1}{7}\left(\begin{array}{c}2 \\ -3 \\ 6\end{array}\right)$ (ii) $\begin{aligned} & \overrightarrow{O E}=\left(\begin{array}{l} 6 \\ 3 \\ 6 \end{array}\right)+\left(\begin{array}{c} 1 \\ -11 / 2 \\ 3 \end{array}\right)=\left(\begin{array}{c} 7 \\ 11 / 2 \\ 9 \end{array}\right) \\ & \overrightarrow{O E} \cdot \overrightarrow{O D}=56+0+108=164 \\ & \|\overrightarrow{O E}\|=\sqrt{ } 132.25(=11.5) ; \quad\|\overrightarrow{O D}\|=\sqrt{ } 208 \\ & 164=\sqrt{ } 132.25 \times \sqrt{ } 208 \times \cos \theta \\ & \theta=8.6^{\circ} \text { cao } \end{aligned}$	B1 M1A1 [3] M1A1 M1 M1 M1 A1 [6]	Allow M1A1 for $\frac{1}{7}\left(\begin{array}{c}-2 \\ 3 \\ -6\end{array}\right)$ or $\left(\begin{array}{lll}\frac{2}{7} & \frac{-3}{7} & \frac{6}{7}\end{array}\right)$ etc or equivalent method Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ Correct method for moduli All connected correctly. Dependent on $\overrightarrow{O E}, \overrightarrow{E O}, \overrightarrow{O D}, \overrightarrow{D O}$ used
10 (i) $4(x-3)^{2}-25$ Vertex is $(3,-25)$ (ii) range is $(\mathrm{g}(x)) \geq-9 \quad$ Allow $>$ (iii) $\begin{aligned} & (x-3)^{2}=\frac{1}{4}(y+25) \\ & x-3=(\pm) \frac{1}{2} \sqrt{y+25} \\ & g^{-1}(x)=3-\frac{1}{2} \sqrt{x+25} \end{aligned}$ Domain is $x \geq-9$	B1B1B1 B1 \checkmark [4] B1B1 [2] M1 DM1 A1 B1 \checkmark [4]	Or $a=4, b=3, c=-25$ ft to their (b, c). Accept if not 'hence' $\text { B1 for } \geq \text {, B1 for }-9 \quad \text { Accept e.g. }[-9, \infty]$ Attempt to square root both sides cao ft from their (ii)

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9709	11

11 (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=[6] \times\left[\frac{1}{3}(6 x+2)^{-\frac{2}{3}}\right]$
Equation of tangent is $y-2=m(x-1)$
Equation of normal is $y-2=-\frac{1}{m}(x-1)$
Both eqns correct with $m=\frac{1}{2}$ cao
(ii) $B=\left(0,1 \frac{1}{2}\right) ; \quad C=(2,0)$
$B C=\sqrt{2^{2}+\left(1 \frac{1}{2}\right)^{2}}=2^{1 / 2}$
(iii) $B C: y-1 \frac{1}{2}=-\frac{3}{4}(x-0)$ or
$y=-\frac{3}{4}(x-2)$
Intersection $(E):-\frac{3}{4} x+1 \frac{1}{2}=2 x$
$x=\frac{6}{11} ; y=\frac{12}{11}$
Mid-point of $O A=(1 / 2,1) \rightarrow E$ not mid-point

B1B1 Independent

M1
M1
A1

B1
M1A1 \checkmark [3]

M1
M1
A1
B1
[5]

Where $m=$ numerical $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Including use of $m_{1} m_{2}=-1$
SC 1/3 Blatant tangent/normal reversal

Both cao
ft from their B and C
or $y=-\frac{3}{4} x+1 \frac{1}{2}$
cao
[4]

Dependent on correct x values or y values for both E and the mid-point of $O A$

