Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	73

1 $\begin{aligned} & 50=a+b \times 54 \\ & 100=b^{2} \times 144 \text { or } 10=b \times 12 \\ & b=\frac{5}{6} \text { oe } \\ & a=5 \end{aligned}$	$\begin{array}{ll} \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 & \\ & \\ \hline \end{array}$	Solving two simultaneous equations Both correct
$\begin{array}{rl} 2 & 2 \times z \times \sqrt{\frac{0.35 \times 0.65}{n}}=0.157 \\ z & =2.326 \\ n & =4 \times 2.326^{2} \times 0.35 \times 0.65 \div 0.157^{2} \\ \quad(=199.738 \ldots) \\ n & =200 \end{array}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } \\ \text { B1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & {[5]} \end{array}$	For $\sqrt{ }(p q / n)$ in equation For equation of the form $2 \times z \times \mathrm{f}(n)=0.157$ Rearrange to form $n=\ldots$ from a correct equation in n, but allow any z and/or factor of " 2 " errors cao
3 (i) Number all members Explain the selection of 3-digit random numbers Omit repeats OR omit nos. over 750 (until have 8 nos.)	B1 B1 B1 [3]	
$\text { (ii) } \begin{aligned} & \text { Est }(\mu)=20 \\ & \text { Est }\left(\sigma^{2}\right)=\frac{8}{7}\left(\frac{3636}{8}-20^{2}\right) \\ & =\frac{436}{7} \text { or } 62.3(3 \mathrm{sfs}) \end{aligned}$	B1 M1 A1 [3]	$1 / 7 \times\left(3636-160^{2} / 8\right)$ $(7.89 \ldots)^{2} \text { M1A1, but } 7.89 \ldots \text { only M1A0 }$
(iii) Amounts spent last week in café by all club members	B1 [1]	
4 (i) $\begin{aligned} & \int_{0}^{1} k e^{-x} \mathrm{~d} x=1 \\ & {\left[-k e^{-x}\right]_{0}^{1}=1} \\ & \left(=-k e^{-1}-\left(-k e^{0}\right)\right) \\ & =k \times \frac{e-1}{e}=1 \text { or } k(e-1)=e \\ & k=\frac{e}{e-1} \quad \mathbf{A G} \end{aligned}$	M1 A1 A1 [3]	Int $=1$, ignore limits Correct integral \& limits, \& = 1 Correctly obtained, no errors seen

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	73

$\text { (ii) } \begin{aligned} & \frac{e}{e-1} \int_{0}^{1} x e^{-x} \mathrm{~d} x \\ = & \frac{e}{e-1}\left(\left[x\left(-e^{-x}\right)\right]_{0}^{1}-\int_{0}^{1}\left(-e^{-x}\right) \mathrm{d} x\right) \\ = & \frac{e}{e-1}\left(\left[-x e^{-x}\right]_{0}^{1}-\left[e^{-x}\right]_{0}^{1}\right) \\ & \left.=\frac{e}{e-1}\left(-e^{-1}-0-\left(e^{-1}-1\right)\right)\right) \\ = & \frac{e}{e-1}\left(1-\frac{2}{e}\right) \text { or } \frac{e-2}{e-1} \text { oe } \end{aligned}$		Attempt $\int \mathrm{xf}(x) \mathrm{d} x$, ignore limits Attempt integration by parts the correct way round, ignore limits Attempt second integral of the form $\pm \int \mathrm{e}^{-x} \mathrm{~d} x$, ignore limits Accept k instead of $\frac{e}{e-1}$ throughout except ans
5 (i) Assume pop sd same (105) $\mathrm{H}_{0}:$ Pop mean $=1150$ H_{1} : Pop mean <1150 $\begin{aligned} & \frac{\frac{21800}{20}-1150}{\frac{105}{\sqrt{20}}} \\ & = \pm 2.556 \text { or } 2.56 \end{aligned}$ Compare with $z= \pm 2.326$ (for a clear 2 tail test compare with ± 2.576) Evidence that mean distance decreased	B1 B1 M1 A1 M1 A1ft	Allow " μ " but not just "mean" Allow $\div \frac{105}{20}$. (Accept "totals" method) Or 0.0053 if prob/area comparison used Correct comparison of z or prob/area consistent with their test In context. Allow mean dist decreased ft their z and/or clear 2 tail test
(ii) 0.01 Concluding there has been a decrease when there has not.	B1 B1 [2]	In context

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	73

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE ASIA LEVEL - October/November 2011	$\mathbf{9 7 0 9}$	$\mathbf{7 3}$

(ii) $\mathrm{N}(52,52)$
$\frac{60.5-52}{\sqrt{52}}$
$1-\Phi(" 1.179 ")$
$(=1-0.8808)$
$=0.119(3 \mathrm{sfs})$

$(=1.179) |$| B 1 | |
| :--- | :--- |
| M 1 | |
| M 1 | |
| Al | $[4]$ |

Seen or implied
Standardising with $\mathrm{N}(\lambda, \lambda)$ with $\lambda=10 \times 5.2$ or 10×2.6
Allow with wrong or no cc or no $\sqrt{ }$
Their correct area

4]

