		970	9 w11 ms 73
Page 4	e 4 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	73

4	50		D1		
1	50 = a + b		B1		
	$100 = b^2$	$\times 144$ or $10 = b \times 12$	B1		
	$b = \frac{5}{6} \text{o}$	e	M1		Solving two simultaneous equations
	<i>a</i> = 5		A1	[4]	Both correct
2	$2 \times z \times \sqrt{-1}$	$\frac{0.35 \times 0.65}{n} = 0.157$	M1 M1		For $\sqrt{(pq/n)}$ in equation For equation of the form $2 \times z \times f(n) = 0.157$
	<i>z</i> = 2.326		B1		
	$n = 4 \times 2.$	$326^2 \times 0.35 \times 0.65 \div 0.157^2$ (=199.738)	M1		Rearrange to form $n =$ from a correct equation in <i>n</i> , but allow any <i>z</i> and/or factor of "2" errors
	<i>n</i> = 200		A1	[5]	cao
3	(i) Num	ber all members	B1		
	Expl num	ain the selection of 3-digit random bers	B1		
		t repeats OR omit nos. over 750 (until 8 nos.)	B1	[3]	
	(ii) Est ($\mu) = 20$	B1		
	Est ($\sigma^2) = \frac{8}{7} \left(\frac{3636}{8} - 20^2 \right)$	M1		$1/7 \times (3636 - 160^2/8)$
	$=\frac{43}{7}$	$\frac{36}{7}$ or 62.3 (3 sfs)	A1	[3]	(7.89) ² M1A1, but 7.89 only M1A0
	(iii) Amo mem	ounts spent last week in café by all club bers	B1	[1]	
4	(i) $\int_{0}^{1} ke$	$e^{-x}dx = 1$	M1		Int = 1, ignore limits
	[<i>– ke</i>	$\left[e^{-x}\right]_{0}^{1} = 1$	A1		Correct integral & limits, & = 1
	(=-/	$ke^{-1} - (-ke^0)$)			
	$=k \times$	$k = \frac{e-1}{e} = 1$ or $k(e-1) = e$			
	k = -	$\frac{e}{e-1}$ AG	A1	[3]	Correctly obtained, no errors seen

		970	9 w11 ms 7
Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	73

	(ii)	$\frac{e}{e-1} \int x e^{-x} dx$	M1	Attempt $\int x f(x) dx$, ignore limits
		$=\frac{e}{e-1}\left(\left[x(-e^{-x})\right]_{0}^{1}-\int_{0}^{t}(-e^{-x})dx\right)$	M1*	Attempt integration by parts the correct way round, ignore limits
		$= \frac{e}{e-1} \left(\left[-xe^{-x} \right]_{0}^{1} - \left[e^{-x} \right]_{0}^{1} \right)$	M1dep*	Attempt second integral of the form $\pm \int e^{-x} dx$, ignore limits
		$(=\frac{e}{e-1}(-e^{-1}-0-(e^{-1}-1))))$		
		$=\frac{e}{e-1}(1-\frac{2}{e})$ or $\frac{e-2}{e-1}$ oe	A1 [4]	Accept <i>k</i> instead of $\frac{e}{e-1}$ throughout except ans
5	(i)	Assume pop sd same (105)	B1	
		H ₀ : Pop mean = 1150 H ₁ : Pop mean < 1150	B1	Allow " μ " but not just "mean"
		$\frac{\frac{21800}{20} - 1150}{\frac{105}{\sqrt{20}}}$	M1	Allow $\div \frac{105}{20}$. (Accept "totals" method)
		$=\pm 2.556 \text{ or } 2.56$	A1	Or 0.0053 if prob/area comparison used
		Compare with $z = \pm 2.326$ (for a clear 2 tail test compare with ± 2.576)	M1	Correct comparison of z or prob/area consistent with their test
		Evidence that mean distance decreased	A1ft [6]	In context. Allow mean dist decreased ft their z and/or clear 2 tail test
	(ii)	0.01	B1	
		Concluding there has been a decrease when there has not.	B1 [2]	In context

		970	9 w11 ms 73
Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	73

				1		1
6	(i)	$E(Tot) = 2 \times 36 + 55$	(= 127)	B1		(Or ±13)
		$Var(Tot) = 2 \times 3.5^2 + 5.2^2$	(= 51.54)	B1		
		$\frac{140 - 127}{\sqrt{51.54''}}$	(= 1.811)	M1		For standardising with their mean and var. Allow without $$ or with false cc, but their mean and variance must involve parameters from both given distributions
		Φ("1.811")				
		= 0.965 (3 sfs)		A1	[4]	
	(ii)	$E(RM) = 36 + 1.5 \times 55$	(= 118.5)	B1		(Or ±18.5)
		$Var(RM) = 3.5^2 + 1.5^2 \times 5.2^2$	(= 73.09)	B1		
		$\frac{100 - 1185}{\sqrt{73.09}}$	(= -2.164)	M1		For standardising with their mean and var. Allow without $$ or with false cc, but their mean and variance must involve parameters from both given distributions
		$1 - \Phi(\text{``-2.164''}) = \Phi(\text{``2.164''})$				
		0.985 (3 sfs)		A1	[4]	
7	(i)	(a) $1 - e^{-1.2}(1 + 1.2)$ $1 - e^{-1.4}$	(= 0.3374) (= 0.7534)	M1 A1		M1 for Poisson either P(0 or 1) or P(0) with $\lambda = 1.2$ or 2.4 or 1.4 or 2.8, accept one end error Both expressions fully correct
		$(1 - e^{-1.2}(1 + 1.2)) \times (1 - e^{-1.4})$	⁴)	M1		Their Poisson P(0 or 1) \times P(0)
		= 0.254 (3 sfs)		A1	[4]	
	(i)	(b) $\lambda = 2.6$ seen		B1		
		$1 - e^{-2.6}(1 + 2.6 + 2.6^2 \div 2)$		M1		Poisson 1 – P(0, 1, 2), allow 1 – P(0, 1, 2, 3), with attempt at combined λ for M and W. Accept combination method: at least 4 correct terms and "1 –" M1; all terms correct B1
		= 0.482 (3 sfs)		A1	[3]	

Derre 7	Maule Cabamas Taa	ah ara' war			970	
Page 7 Mark Scheme: Teachers' version GCE AS/A LEVEL – October/Nov						Paper 73
(ii) N(52, 52	2)	B1		Seen or	implied	
$\frac{60.5-52}{\sqrt{52}}$.179) M1		$\lambda = 10 \times$	lising with N(λ , λ 5.2 or 10 × 2.6 vith wrong or no c	- -
1 – Φ("1.179")		M1		Their co	rrect area	
(= 1 - 0.8808)						
= 0.119	(3 sfs)	A1	[4]			