		970	9 w11 ms 63
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	63

1	(i)	<i>z</i> = 0.38	B1		$\pm 0.38(0)$ seen or implied
		$\pm \frac{25 - \mu}{2} = 0.38$	M1		Standardising attempt resulting in $z =$
		$\mu/3$	M1		some $\mu \sigma$ both, no continuity correction Substituting to eliminate μ or σ and attempt to solve linear equation
		$\mu = 22.2, \ \sigma = 7.40$	A1	[4]	Both correct
	(ii)	$P(4) = {}^{6}C_{4}(0.352)^{4}(0.648)^{2}$	M1		${}^{6}C_{r} \times (p)^{r} \times (1-p)^{6-r}, r = 2 \text{ or } 4$
		= 0.0967	A1	[2]	Correct answer
2	(i)	$P(F) = \frac{12}{30} \ (0.4)$	B1		$\frac{12}{30}$ or $\frac{16}{30}$ or $\frac{5}{30}$ seen
		or $P(W) = \frac{16}{30} (0.533)$	M1		Valid attempt to find P(<i>F</i> or <i>W</i>)
		or $P(M \cap W') = \frac{5}{30} (0.167)$			
		$(F \text{ or } W) = \frac{13}{30} + \frac{3}{30} + \frac{9}{30}$	A1		Correct unsimplified expression
		or $1 - \frac{5}{30}$ or $\frac{12}{30} + \frac{16}{30} - \frac{3}{30}$			
		$=\frac{5}{6}(0.833)$	A1	[4]	Correct answer
	(ii)	P(M) = 18/30 (0.6), P(W) = 16/30 (0.533), $P(M) \times P(W) = 8/25 (0.32)$	M1		Valid attempt to find $P(M)$, $P(W)$ and $P(M) \times P(W)$
		$P(M \text{ and } W) = 13/30 (0.433) \neq 8/25 (0.32)$	A1		$P(M \text{ and } W) = 13/30 \neq 8/25$ and correct conclusion
		not independent			
		OR			
		$P(M W) = \frac{P(M \text{ and } W)}{P(W)} = \frac{\frac{13}{30}}{\frac{16}{30}} = \frac{13}{16} (0.813)$	M1		Valid attempt to find $P(M \text{ and } W)$, $P(W)$ and $P(M \text{ and } W) \div P(W)$
		$\neq \frac{18}{30} = P(M),$	A1		$\frac{13}{16} \neq \frac{18}{30} = P(M)$
		not independent			
		OR			
		$P(W_{1}^{'}M) = \frac{P(M \text{ and } W)}{P(W)} = \frac{\frac{13}{30}}{\frac{18}{30}} = \frac{13}{18}$	M1		Valid attempt to find $P(M \text{ and } W)$, $P(M)$ and $P(M \text{ and } W) \div P(M)$
		$\neq \frac{16}{30} = \mathbf{P}(W),$	A1		$\frac{13}{16} \neq \frac{18}{30} = P(M)$
		not independent		[2]	

		9709	9 w11 ms 63
Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	63

3	(i)	P(3m) = 4/5 (0.8) P(5m) = 1/5 (0.2)	B1		P(3m) = 4/5 or $P(5m) = 1/5$ seen or implied
		E(X) = 17/5 (3.4)	B1 M1		Correct E(X) Subtract their mean ² numerically from $\sum x^2 p$, no extra dividing
		Var(X) = 16/25 (0.64)	A1	[4]	Correct answer
	(ii)	$P(3, 5) + P(5, 3) = 0.8 \times 0.2 + 0.2 \times 0.8$	M1		Summing two 2-factor terms
		= 8/25 (0.32)	A1√	[2]	Correct answer, ft on $2 \times p \times (1-p)$, their p
	(iii)	P(11) = P(3, 3, 5) + P(3, 5, 3) + P(5, 3, 3)	M1		Mult 2 probs for 3 with 1 prob for 5
		$= (4/5 \times 4/5 \times 1/5) \times 3$	M1		Multiplying probs for 11 by 3 or summing 3 options
		= 48/125 (0.384)	A1	[3]	Correct final answer
4	(i)	$3! \times 4! \times 8! \times 3!$	M1 M1		Multiplying 3 factorials together Multiplying by 3!
		= 34 836 480 (34 800 000)	A1	[3]	Correct answer
	(ii)	${}^{3}\mathrm{C}_{2} \times {}^{4}\mathrm{C}_{2} \times {}^{8}\mathrm{C}_{2}$	M1		Multiplying (only) 3 combinations together
		= 504	A1	[2]	Correct answer
	(iii)	Fr Fa H			
		3 1 $2 = {}^{8}C_{3} \times {}^{3}C_{1} \times {}^{4}C_{2} = 1008$	M1		Multiplying 3 combinations, only
		3 2 $1 = {}^{8}C_{3} \times {}^{3}C_{2} \times {}^{4}C_{1} = 672$	M1		Summing 3 options
		4 1 $1 = {}^{8}C_{4} \times {}^{3}C_{1} \times {}^{4}C_{1} = 840$	A1		3 correct combination answers
		total ways = 2520	A1	[4]	Correct answer
5	(i)	LQ = 15, Median = 18, UQ = 26	B1		LQ = 15, Median = 18, and $UQ = 26$
			B1 B1√		Quartiles and median box, ft on their
			D1		values, but $M - LQ < UQ - M$
		0 10 20 30 40 50 60 70 80	DIV		ft on their values
		salary/10 ³		[4]	
	(ii)	most (3/4) are earning less than 26K, not many earning high salaries, etc	B1	[1]	Any sensible answer
	(iii)	(a) IQ range = 11	B1		IQR = 11
		high outlier is above $26 + 1.5 \times 11$	M1		Their UQ + $1.5 \times$ their IQ range
		= 42500 euros	A1	[3]	Correct answer
		(b) Low outlier is below $15 - 1.5 \times 11 = -1.5$	B1√	[1]	Correct reason, must involve subtraction, ft on their LQ and $1.5 \times$ their IQR

<u> </u>							<u>9 w11 ms 6</u>	
Page 6 Mark Scheme: Teachers' version			sion		Syllabus	Paper		
	GCE AS/A LEVEL – October/November 2011				2011	9709	63	
6	6 (i) $P(O \text{ given } +) = \frac{0.37}{0.83}(0.4458)$		B1 A1 M1		0.83 seen or implied Attempt to find P(O given +) using conditional probability fraction Binomial term ${}^{9}C_{r}p^{r}(1-p)^{9-r}, r \neq 0$ or 9			
$P(0, 1, 2) = (0.4458)^{0}(0.5542)^{9} + {}^{9}C_{1}(0.4458)^{1}(0.5542)^{8} + {}^{9}C_{2}(0.4458)^{2}(0.5542)^{7}$			M1 A1		Binom 1, 2, 3 < 1 Correc	Binomial expression P(0, 1, 2) or P(0 1, 2, 3) powers summing to 9 any 0 < < 1 Correct unsimplified expression		
= 0.156			A1	[6]	Correct final answer			
	(ii) $\mu = 150$	$\times 0.35 = 52.5,$	B1		150 × 0.65 (3	0.35 (52.5) and 15 34.125) seen	$50 \times 0.35 \times$	
	$\sigma^2 = 15$	$0 \times 0.35 \times 0.65 = 34.125$	M1 M1		Standardising, using sd not variance Using continuity correction, 59.5 or 60			
	P(> 60.:	$5) = P\left(z > \pm \frac{60.5 - 52.5}{\sqrt{34.125}}\right)$	M1		correct area (< 0.5, for mean < their 60)			
		$= 1 - \Phi(1.369)$						
= 0.0854 or 0.0855			A1	[5]	correct	t value		