		970	9 w11 ms 61
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	61

1	$\mu = 250 \times 0.86 = 215$	B1		250×0.86 and $250 \times 0.86 \times 0.14$ seen o.e
	$\sigma^2 = 250 \times 0.86 \times 0.14 = 30.1$	M1		Standardising, with or without cc, must have sq rt in denom
	$P(X > 210) = 1 - \Phi\left(\frac{210.5 - 215}{\sqrt{30.1}}\right)$	M1		Continuity correction 210.5 or 209.5 only
	$= \Phi(0.820)$	M1		Correct region (> 0.5) ft their mean
	= 0.794	A1	[5]	Correct answer
2	(i) $133/n + 25 = 28.325$	M1		Equation involving 133, 25 and 28.325
	n = 40	A1		Correct answer for <i>n</i>
	$3762/40 - 3.325^2 = 82.99$	M1		Using coded mean in variance formula
	standard deviation = 9.11	A1	[4]	Correct answer
	(ii) $82.99 = \sum x^2 / 40 - 28.325^2$	M1		Using uncoded material in variance formula
	$\sum x^2 = (82.99 + 28.325^2) \times 40$			
	= 35412 (35400)	A1		Correct answer
	OR			
	$\sum (x - 25)^2 = \sum x^2 - 50 \sum x + 40 \times 25^2$	M1		Expanding and substituting for $\sum x$
	$\sum x^2 = 3762 + 50 \times 1133 + 25000$			
	= 35412	A1	[2]	Correct answer
3	(i) $P(X=1) = P(GBBB) 4 \times C_1$	M1		Considering values of <i>X</i> of 1, 2, 3, 4
	$= 5/8 \times 3/7 \times 2/6 \times 1/5 \times 4 = 1/14$	M1		Attempting to find the probability of at least 2 values of X
	$P(X=2) = P(GGBB) \times {}_{4}C_{2} = 3/7$			
	$P(X=3) = P(GGGB) \times {}_{4}C_{3} = 3/7$	A1		One correct probability
	$P(X=4) = P(GGGG) \times {}_{4}C_{4} = 1/14$	A1		All correct
	OR			
	$P(1) = {}_{5}C_{1} / {}_{8}C_{4} = 1/14$	M1		Considering values of <i>X</i> of 1, 2, 3, 4
	$P(2) = {}_{3}C_{2} \times {}_{5}C_{2} / {}_{8}C_{4} = 3/7$	M1		Dividing by ₈ C ₄
	$P(3) = {}_{3}C_{1} \times {}_{5}C_{3} / {}_{8}C_{4} = 3/7$	A1		One correct probability
	$P(4) = {}_{5}C_{4} / {}_{8}C_{4} = 1/14$	A1	[4]	All correct
	(ii) $\operatorname{Var}(X) = 1/14 + 12/7 + 27/7 + 16/14 - (5/2)^2$	M1		Using a variance formula correctly with mean ² subtracted numerically, no extra division
	= 15/28 (0.536)	A1	[2]	Correct final answer

						9709	9_w11_ms_63
Page 5		Mark Scheme: Teachers' version				Syllabus	Paper
		GCE AS/A LEVEL - October/	NOVEII		.011	9709	01
4	4 (i) History: lowest 27, highest 57, $LQ = 33$ med = 39 UQ = 50		M1		Attemp median leaf (ca reason	ot to find history q n by putting in ord an be implied if th able)	uartiles and er or stem and e answer is
	Physics				Correc	t history median a	nd quartiles
					Unifor	m scale and labels	5
	History				Correc line no	t history graph ft t t through box	heir quartiles
	<u> </u>				Correc	t physics graph	
	10 2	20 30 40 50 60 70 marks		[1]			
	(ii) Physics History	marks are more spread out than marks	B1	[1]	Any se	ensible comment	
5	(i) $z = 1.88$	32 or 1.881	B1		±1.882	2 or ±1.881 seen	
	1.882 =	$(32 - 20) / \sigma$	M1		Equati z-value	on using their <i>z</i> (n e) 32, 20 and s	nust be a
	$\sigma = 6.38$	3	A1	[3]	Correc	t answer	
	(ii) $P(x > 13)$	$B) = P\left(z > \frac{13 - 20}{6.376}\right)$	M1		Standa	rdising	
		= P(z > -1.0978)	M1		Correc	t area > 0.5	
		= 0.864	A1	[3]	Correc	t answer	
	(iii) P(at leas	st 2) = 1 - P(0, 1)	M1		Using in a bin summi	0.03 and 0.97 or 0 nomial expression ng to 7	0.06 and 0.94 powers
		$= 1 - (0.97)^7 - (0.03)(0.97)^6 {}_7C_1$	M1		Correc expans	t unsimplified bin sion	omial
		= 0.0171	A1	[3]	Correc	t answer	
6	(a) (i) $\frac{12}{2!3}$	$\frac{2!}{3!2!} = 19958400 \ (20,000,000)$	M1 A1	[2]	Dividin Correc	ng by 2! 3! 2! t answer	
	(ii) $\frac{4!}{2!}$	$\times \frac{9!}{2!3!} = 362880$	B1 B1 B1	[3]	4! seer 9! or 9 Correc	n multiplied × 8! seen multipl t final answer	ied
	(b) (i) 387	76 × 4!	M1		Multip	lying by 4!	
	= 9	3024	A1	[2]	Correc	t answer	
	(ii) (3!)	$)^{4} \times 4!$	M1		3! or 6	or 4! seen	
	= 3	1104	A1	[2]	Correc	t final answer	

		9709	9 w11 ms 63
Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	61

7	(i)	$P(2, N2, 2) = 1/4 \times 1 \times 1/7 = 1/28$	M1		Considering at least two options of 2s and 8s
		$P(8, 8, N8) = 1/4 \times 2/5 \times 3/7 = 3/70$	M1		Considering three options for the 8s
		$P(8, N8, 8) = 1/4 \times 3/5 \times 4/7 = 3/35$	M1		Summing their options if more than 3 in total
		$P(N8, 8, 8) = 3/4 \times 2/5 \times 4/7 = 6/35$	B1		One option correct
		$\Sigma = 47/140 \ (0.336)$	A1	[5]	Correct answer
	(ii)	P(2, 2 given same) = $\frac{1/28}{47/140}$	M1		1/28 in numerator of a fraction
		= 5/47 (0.106)	A1	[2]	Correct answer
	(iii)	P(X) = 47/140	M1		Attempt to compare $P(A \text{ and } B)$ with $P(A) \times P(B)$ or using conditional probabilities
		P(Y) = 1/4			
		$P(X \text{ and } Y) = 1/28 \neq 47/140 \times 1/4$	A1		Legitimate correct answer
		Not independent		[2]	