Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	61

$1 \mu=250 \times 0.86=215$ $\sigma^{2}=250 \times 0.86 \times 0.14=30.1$ $\begin{align*} \mathrm{P}(X>210) & =1-\Phi\left(\frac{210.5-215}{\sqrt{30.1}}\right) \\ & =\Phi(0.820) \\ & =0.794 \tag{5} \end{align*}$	B1 M1 M1 M1 A1	$250 \times 0.86 \text { and } 250 \times 0.86 \times 0.14 \text { seen }$ o.e Standardising, with or without cc, must have sq rt in denom Continuity correction 210.5 or 209.5 only Correct region (>0.5) ft their mean Correct answer
$\begin{array}{ll} 2 \text { (i) } & 133 / n+25=28.325 \\ & n=40 \\ & 3762 / 40-3.325^{2}=82.99 \\ & \text { standard deviation }=9.11 \end{array}$	$\begin{array}{lr} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & {[4]} \\ \hline \end{array}$	Equation involving 133, 25 and 28.325 Correct answer for n Using coded mean in variance formula Correct answer
(ii) $82.99=\sum x^{2} / 40-28.325^{2}$ $\begin{aligned} \Sigma x^{2} & =\left(82.99+28.325^{2}\right) \times 40 \\ & =35412(35400) \end{aligned}$ OR $\begin{aligned} & \Sigma(x-25)^{2}=\Sigma x^{2}-50 \sum x+40 \times 25^{2} \\ & \Sigma x^{2}=3762+50 \times 1133+25000 \\ & \quad=35412 \end{aligned}$	M1 A1 M1 A1 [2]	Using uncoded material in variance formula Correct answer Expanding and substituting for $\sum x$ Correct answer
3 (i) $\begin{aligned} \mathrm{P}(X=1) & =\mathrm{P}(\mathrm{GBBB}) 4 \times \mathrm{C}_{1} \\ & =5 / 8 \times 3 / 7 \times 2 / 6 \times 1 / 5 \times 4=1 / 14 \\ \mathrm{P}(X=2) & =\mathrm{P}(\mathrm{GGBB}) \times{ }_{4} \mathrm{C}_{2}=3 / 7 \\ \mathrm{P}(X=3) & =\mathrm{P}(\mathrm{GGGB}) \times{ }_{4} \mathrm{C}_{3}=3 / 7 \\ \mathrm{P}(X=4) & =\mathrm{P}(\mathrm{GGGG}) \times{ }_{4} \mathrm{C}_{4}=1 / 14 \end{aligned}$ OR $\begin{aligned} & \mathrm{P}(1)={ }_{5} \mathrm{C}_{1} /{ }_{8} \mathrm{C}_{4}=1 / 14 \\ & \mathrm{P}(2)={ }_{3} \mathrm{C}_{2} \times{ }_{5} \mathrm{C}_{2} /{ }_{8} \mathrm{C}_{4}=3 / 7 \\ & \mathrm{P}(3)={ }_{3} \mathrm{C}_{1} \times{ }_{5} \mathrm{C}_{3} /{ }_{8} \mathrm{C}_{4}=3 / 7 \\ & \mathrm{P}(4)={ }_{5} \mathrm{C}_{4} /{ }_{8} \mathrm{C}_{4}=1 / 14 \end{aligned}$	M1 M1 A1 A1 M1 M1 A1 A1	Considering values of X of 1, 2, 3, 4 Attempting to find the probability of at least 2 values of X One correct probability All correct Considering values of X of 1, 2, 3, 4 Dividing by ${ }_{8} \mathrm{C}_{4}$ One correct probability All correct
$\text { (ii) } \begin{aligned} \operatorname{Var}(X) & =1 / 14+12 / 7+27 / 7+16 / 14-(5 / 2)^{2} \\ & =15 / 28(0.536) \end{aligned}$	M1 A1 [2]	Using a variance formula correctly with mean ${ }^{2}$ subtracted numerically, no extra division Correct final answer

9709 w11 ms 61

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	61

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	61

$7 \text { (i) } \begin{aligned} & \mathrm{P}(2, \mathrm{~N} 2,2)=1 / 4 \times 1 \times 1 / 7=1 / 28 \\ & \mathrm{P}(8,8, \mathrm{~N} 8)=1 / 4 \times 2 / 5 \times 3 / 7=3 / 70 \\ & \mathrm{P}(8, \mathrm{~N} 8,8)=1 / 4 \times 3 / 5 \times 4 / 7=3 / 35 \\ & \mathrm{P}(\mathrm{~N} 8,8,8)=3 / 4 \times 2 / 5 \times 4 / 7=6 / 35 \\ & \\ & \sum=47 / 140(0.336) \end{aligned}$	M1 M1 M1 B1 A1 [5]	Considering at least two options of 2 s and 8 s Considering three options for the 8 s Summing their options if more than 3 in total One option correct Correct answer
$\text { (ii) } \begin{align*} \mathrm{P}(2,2 \text { given same }) & =\frac{1 / 28}{47 / 140} \\ & =5 / 47(0.106) \tag{2} \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$1 / 28$ in numerator of a fraction Correct answer
(iii) $\mathrm{P}(X)=47 / 140$ $\begin{aligned} & \mathrm{P}(Y)=1 / 4 \\ & \mathrm{P}(X \text { and } Y)=1 / 28 \neq 47 / 140 \times 1 / 4 \end{aligned}$ Not independent	M1 A1 [2]	Attempt to compare $\mathrm{P}(A$ and $B)$ with $\mathrm{P}(A) \times \mathrm{P}(B)$ or using conditional probabilities Legitimate correct answer

