Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	53

$1 \quad 17 \sin 50-2 \mathrm{~g}$ $\mathrm{v}^{2}=(17 \sin 50-2 \mathrm{~g})^{2}+(17 \cos 50)^{2}$ $\mathrm{v}=13(.0) \mathrm{ms}^{-1}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & {[3]} \end{array}$	Vertical component of velocity Pythagoras with 2 perpendicular components
2 (i) 0.212	B1 [1]	From (0.6/2) $\cos 45$
(ii) (a) $\begin{aligned} & 0.3 \cos 45 \times(2 \times 7)=(2 \times 06 \sin 45) \times F \\ & F=3.5 \end{aligned}$	$\begin{array}{cc} \text { M1 } & \\ \text { A1 } & {[2]} \end{array}$	Moments about A
$\begin{aligned} & \text { (ii) (b) } 0.3 \cos 45 \times(2 \times 7)=0.6 F \\ & F=4.95 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & {[2]} \end{array}$	Or Ans (i)/ $\cos 45$
3 (i) $\begin{aligned} & x=(25 \cos 45) \mathrm{t} \\ & y=(25 \sin 45) t-g t^{2} / 2 \\ & y=x(25 \sin 45) /(25 \cos 45)-g\left[x /(25 \cos 45)^{2}\right] / 2 \\ & y=x-0.016 x^{2} \end{aligned}$	B1 B1 M1 A1 	Eliminates t between 2 simultaneous equations
(ii) $2.4=x-0.016 x^{2}$ $\text { Distance }=57.5 \mathrm{~m}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & {[2]} \end{array}$	Creates and attempts to solve a quadratic equation $(x=2.5,60)$
4 (i) $\begin{aligned} & 0.4 \delta v / \delta t=0.2 v^{2} \\ & \int v^{-2} \delta v=-0.5 \int \delta t \\ & -v^{-1}=-0.5 t(+c) \\ & t=0, v=8, \text { hence } c=-0.125 \\ & v=1 /(0.125+0.5 t)=8 /(1+4 t) A G \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & {[4]}\end{array}$	Newton's Second Law with $a=\delta v / \delta t$
$\text { (ii) } \begin{aligned} & \delta x / \delta t=8 /(1+4 t) \\ & x=8 \int \delta t /(1+4 t) \\ & x=\frac{8}{4} \ln (1+4 t)(+c) \\ & t=1.5, x=\frac{8}{4} * \ln (1+4 \times 1.5) \\ & O P=3.89 \mathrm{~m} \end{aligned}$	M1* A1 D* M1 A1	Accept $c=0$ assumed Or limits used $\frac{8}{4}\left[\ln (1+4 t]_{0}^{1.5}\right.$ 4

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	53

5 (i) $\begin{aligned} & 0.2 \omega^{2} \times 1.2=6 \\ & \omega=5 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & {[2]} \end{array}$	Uses radial acceleration on R, 1 force
(ii) $m \omega^{2} \times 2 \times 0.4=10-6$ $m=0.2 \mathrm{~kg}$	M1 A1 [3]	Uses radial acceleration on $Q, 2$ forces
$\text { (iii) } \begin{aligned} & 0.2 \times(5 \times 1.2)^{2} / 2=\mathrm{M}(5 \times 0.4)^{2} / 2 \\ & M=1.8 \mathrm{~kg} \\ & 1.8 \times 5^{2} \times 0.4=\mathrm{T}-10 \\ & T=28 \mathrm{~N} \end{aligned}$	$\begin{array}{cc} \text { M1 } & \\ \text { A1 } & \\ \text { DM1 } & \\ \text { A1 } & {[4]} \end{array}$	
6 (i) $\begin{aligned} & \pi 0.6^{2} \times 0.6 \times 0.3-2 \pi 0.6^{3} / 3 \times 3 \times 0.6 / 8 \\ & =\left(\pi 0.6^{3}+2 \pi 0.6^{3} / 3\right) d \\ & d=0.09 \mathrm{~m} \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { A1 } & {[4]}\end{array}$	Table of moments idea Correct elements Correct composite
(ii) $\begin{aligned} & \frac{2}{3} \pi 0.6^{3} \times \frac{3}{8} \times 0.6-\pi \times 0.6^{3} \times 0.3 \\ & +0.48 A \times 0.36=0 \\ & A=3 \pi / 16 \mathrm{~m}^{2} \end{aligned}$ OR $\begin{aligned} & {\left[\frac{2}{3} \pi \times 0.6^{3}+\pi \times 0.6^{3}\right] \times 0.09=0.48 A \times 0.36} \\ & A=3 \pi / 16 \end{aligned}$	M1 A1 A1 A1 M1 A1 A1 A1	Table of moments idea (about O) Correct elements Table of moments idea (about O) Correct elements
(iii) Increase in length $[=2 \times(0.6-0.48)]=0.24 \mathrm{~m}$	B1 [1]	Remove cylinder with centre of mass a O

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	53

$\begin{gathered} 7 \quad \text { (i) } \quad 0.8 g \sin 30=20 e / 0.4 \\ e=0.08 \mathrm{~m} \end{gathered}$	M1 A1 [2]	
(ii) $\begin{aligned} & 0.8 v^{2} / 2+20 \times 0.08^{2} /(2 \times 0.4) \\ & =0.8 \mathrm{~g}(0.4+0.08) \sin 30 \\ & v=2.1(0) \mathrm{ms}^{-1} \end{aligned}$	M1 A1 A1 A1 [4]	Conservation of KE, PE, EE Correct start terms, signs accurate Correct final term, sign accurate
(iii) $\begin{aligned} & 0.8 g d \sin 30=20(\mathrm{~d}-0.4)^{2} /(2 \times 0.4) \\ & 25 d^{2}-24 d+4=0 \\ & d=0.745 \mathrm{~m} \end{aligned}$	M1* A1 D* M1 A1 [4]	$4 d=25(d-0.4)^{2}$ Obtains and solves a 3 term quadratic equation.

