		970	9 w11 ms 43
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	43

1	(i)		M1		For using the gradient property for
					acceleration or $v = u + at$
	Acceleration is 0.02 ms^{-2}		A1		
	Acceleration is -0.21 ms^{-2}		A1	3	
	(ii) $[\frac{1}{2}(1.5+2.1) \times 30 + \frac{1}{2}2.1 \times 10^{-1}]$	$0 - \frac{1}{2} 2.2 \times 20$]	M1		For using the area property for displacement
	Distance AB is 42.5 m		A1	2	
	(iii) Total distance walked is 86.5 n	n	B1ft	1	ft error in '64.5' or '22.0' or both
2			M1		For resolving in i and j directions.
	$X = 31 + 26\cos\alpha, Y = 58 - 26\sin\alpha$				
	X = 55, Y = 48		A1		May be implied
		dM1		For using $R = (X^2 + Y^2)^{\frac{1}{2}}$ or tan $\theta = Y/X$	
	Resultant is 73N or Direction is at 41.1° to i direction				
	Direction is at 41.1° to i direction or Resultant is 73N			6	
Alt	ernative solution for Q2				
	$[\tan \theta_{12} = 58/31, R_{12}^2 = 31^2 + 58^2]$		M1		For finding an angle and the hypotenuse of a right angled Δ whose other sides are 31 & 58
	$\theta_{12} = 61.9^{\circ}$ and $R_{12} = 65.76$		A1		
	[Incl. angle = $(180 - \theta_{12} - \alpha)^{\circ}$, R ² = 26 ² + R ₁₂ ² - 2 × 26R ₁₂ cos (incl. angle)]				For finding the included angle between sides R_{12} and 26 and using the cosine rule to find R
	Incl. angle = 95.5° , Resultant is 73 N	A1			
	$[\sin \beta = 26\sin 95.5/73; \ \theta = 61.9 - \beta]$				For using the sine rule in the triangle to find the angle opposite 26 and subtracting this from θ_{12}
	Direction is at 41.1° to i direction	A1			
3			M1		For using Newton's second law
	0.9g - 7.2 = 0.9a	(a = 2)	A1		
	$[v^2 = 2 \times (0.9g - 7.2)/0.9 \times 2]$	$(v = \sqrt{8})$	M1		For using $v^2 = (0^2) + 2ah$
	$u_{\text{slack}} = v_{\text{taut}} = 2\sqrt{g-8}$	B1ft		ft incorrect equation for a	
	[distance = 4 - 32/g]		M1		For using $(0^2) = u^2 - 2gh$ and distance = 2h
	Distance is 0.8 m			6	

	Pa	ige 5	Mark Scheme: Teachers	s' version			Syllabus	9_w11_ms_ Paper
			GCE AS/A LEVEL – October/	Novembe	r 20 1	1	9709	43
4	(i)	(i) $0.8g \times 4$		B1			Finding PE at A using $\frac{1}{2}$ mv _C ² = P	E _A or
		$[\frac{1}{2} 0.8 v^2 =$	= 32]	M1		½ mv	$v_B^2 = PE_A$ and v_C	$= v_B$
		Speed at $C = 8.94 \text{ ms}^{-1}$			3			
	(ii)	(ii) [Either $F = 0.3(0.8g)$ and $-2.4 = 0.8a$ or $F = 0.3(0.8g)$ and $WD = 2.4 \times 5$]				For using $F = \mu$ mg and either Newton's 2 nd law to find a or $WD = F \times BC$		
		$[v^2 = ans($	$i)^2 - 2 \times 3 \times 5 \text{ or } \frac{1}{2} 0.8v^2 = 32 - 12]$	M1			using either $v^2 = v^2 = PE \log - W$	
		Speed at ($C = 7.07 \text{ ms}^{-1}$	A1	3			
	(i)			M1		For u	using $s = \int v dt$	
		Displacement is $2t^3 - kt^4/4$			2			
	(ii)	t = 6/k		B1	1			
	(iii)	(iii) $[2 \times 216/k^3 - k \times 1296/4k^4 = 108]$ $\rightarrow 2 \times 216 - 1296/4 = 108k^3$]					substituting for t equating to 108	in displacemer
		$\mathbf{k} = 1$			2			
	(iv)	dv/dt = 12	$2t - 3kt^2$	B1				
		= 0 when	t = (0), 4	B1				
		maximum	n value is 32	B1	3			
)				M1		For r	esolving forces h	orizontally
	R =	Tcos30		A1				
				M1			resolving forces v er case)	retically
	F =	Tsin30 – 2	g	A1		(prev	venting upwards	motion)
	– F	= Tsin30 -	- 2g	A1		(prev	venting downwar	ds motion)
				M1			using $F = \mu R$ (eith ppting to solve for	
	T =	2g/(sin30 =	\pm 0.24cos30) either case	A1				
	T =	28.3 and T	C = 68.5	A1	8			

		•				970	
	Pa	ige 6	Mark Scheme: Tead	Syllabus	Paper		
			GCE AS/A LEVEL – Octo	ber/November	· 20 [·]	11 9709	43
7	(i)	DF = 3000	00/v or				
		WD by DI	$F = 30000 \times 100$	B1			
			750 (v = 40) or F = WD by R = 750 × AB	B1			
		Distance A	AB is 4000 m	B1	3		
	(ii)	-750 = 60	0 a $(a = -1.25)$	B1			
		$20^2 = 40^2$ -	+ 2(-1.25)BC	M1		For using $v^2 = u^2 + 2a$	S
		Distance E	3C = 480 m	A1	3		
	Alte	ernative for	<u>(ii)</u>				
				M1		For using 'Loss of ene against resistance'	ergy = WD
		¹ / ₂ 600(40 ²	$(-20^2) = 750(BC)$	A1			
		Distance E	3C = 480 m	A1			
	(iii)	WD by en	$gine = 30000 \times 14$	B1			
		Gain in Kl	$E = \frac{1}{2} 600 (30^2 - 20^2)$	B1			
		[750 × CD	9 = 420 000 - 150 000]	M1		For using $750 \times CD =$ WD by engine – gain	
		Distance C	CD is 360 m	A1	4		