Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	43

1 (i)	M1		For using the gradient property for acceleration or $\mathrm{v}=\mathrm{u}+\mathrm{at}$
Acceleration is $0.02 \mathrm{~ms}^{-2}$	A1		
Acceleration is $-0.21 \mathrm{~ms}^{-2}$	A1	3	
(ii) $[1 / 2(1.5+2.1) \times 30+1 / 22.1 \times 10-1 / 22.2 \times 20]$	M1		For using the area property for displacement
Distance AB is 42.5 m	A1	2	
(iii) Total distance walked is 86.5 m	B1ft	1	ft error in ' 64.5 'or '22.0' or both
2	M1		For resolving in \mathbf{i} and \mathbf{j} directions.
$\mathrm{X}=31+26 \cos \alpha, \mathrm{Y}=58-26 \sin \alpha$	A1		
$\mathrm{X}=55, \mathrm{Y}=48$	A1		May be implied
	dM1		For using $\mathrm{R}=\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{1 / 2}$ or $\tan \theta=\mathrm{Y} / \mathrm{X}$
Resultant is 73 N or	A1		
Direction is at 41.1° to \mathbf{i} direction or Resultant is 73 N	B1	6	
Alternative solution for Q 2			
$\left[\tan \theta_{12}=58 / 31, \mathrm{R}_{12}{ }^{2}=31^{2}+58^{2}\right]$	M1		For finding an angle and the hypotenuse of a right angled Δ whose other sides are $31 \& 58$
$\theta_{12}=61.9^{\circ}$ and $\mathrm{R}_{12}=65.76$	A1		
$\begin{aligned} & \text { [Incl. angle }=\left(180-\theta_{12}-\alpha\right)^{\circ}, \\ & \left.\mathrm{R}^{2}=26^{2}+\mathrm{R}_{12}{ }^{2}-2 \times 26 \mathrm{R}_{12} \cos \text { (incl. angle) }\right] \end{aligned}$	M1		For finding the included angle between sides R_{12} and 26 and using the cosine rule to find R
Incl. angle $=95.5^{\circ}$, Resultant is 73 N	A1		
$[\sin \beta=26 \sin 95.5 / 73 ; \theta=61.9-\beta]$	M1		For using the sine rule in the triangle to find the angle opposite 26 and subtracting this from θ_{12}
Direction is at 41.1° to \mathbf{i} direction	A1		
3	M1		For using Newton's second law
$0.9 \mathrm{~g}-7.2=0.9 \mathrm{a} \quad(\mathrm{a}=2)$	A1		
$\left[\mathrm{v}^{2}=2 \times(0.9 \mathrm{~g}-7.2) / 0.9 \times 2\right] \quad(\mathrm{v}=\sqrt{8})$	M1		For using $\mathrm{v}^{2}=\left(0^{2}\right)+2 \mathrm{ah}$
$\mathrm{u}_{\text {slack }}=\mathrm{v}_{\text {taut }}=2 \sqrt{g-8}$	B1ft		ft incorrect equation for a
[distance $=4-32 / \mathrm{g}$]	M1		For using $\left(0^{2}\right)=\mathrm{u}^{2}-2 \mathrm{gh}$ and distance $=2 \mathrm{~h}$
Distance is 0.8 m	A1	6	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	43

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	43

7 (i) $\mathrm{DF}=30000 / \mathrm{v}$ or

B1 3

WD by DF $=30000 \times 100$
$\mathrm{DF}=\mathrm{R}=750(\mathrm{v}=40)$ or
WD by $\mathrm{DF}=\mathrm{WD}$ by $\mathrm{R}=750 \times \mathrm{AB}$
Distance AB is 4000 m B1
$20^{2}=40^{2}+2(-1.25) B C$
Distance $B C=480 \mathrm{~m}$
Alternative for (ii)
$1 / 2600\left(40^{2}-20^{2}\right)=750(\mathrm{BC})$
Distance $\mathrm{BC}=480 \mathrm{~m}$ Al A1
(iii) WD by engine $=30000 \times 14$

Gain in $\mathrm{KE}=1 / 2600\left(30^{2}-20^{2}\right)$
[750 $\times \mathrm{CD}=420000-150000$]

Distance CD is 360 m
B1

B1
(ii) $-750=600 \mathrm{a} \quad(\mathrm{a}=-1.25)$

A1

B1
B1

A1

M1 \quad For $u \operatorname{sing} v^{2}=u^{2}+2$ as
A1 3

M1 \quad For using 'Loss of energy = WD against resistance'

M1 For using $750 \times \mathrm{CD}=$ WD by engine - gain in KE

4

