Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	41

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	41

(ii) $12 \cos \alpha>\mu \mathrm{R}_{2}$	B1		
$\mathrm{R}_{2}=2 \mathrm{~g}-12 \times 0.6$	B1		
$\mu<9.6 / 12.8=3 / 4$	B1	3	
6 (i) PE gain $=1200 \mathrm{~g} \times 45$	B1		
$\mathrm{WD}=1200 \mathrm{~g} \times 45+360000$	M1		For WD by car's engine $=\mathrm{PE}$ gain +WD against resistance
Work done is 900000 J or 900 kJ	A1	3	
	B1		
KE gain $=1660+540-1798$	B1ft		Accept $1660+540-1800$
[402000 $\left.=1 / 21200\left(\mathrm{v}^{2}-225\right)\right]$	M1		For using KE gain $=1 / 2 \mathrm{~m}\left(\mathrm{v}^{2}-15^{2}\right)$
Speed is $29.9 \mathrm{~ms}^{-1}$	A1	4	AG
(iii) $\frac{P_{B}}{P_{C}}=\left(\frac{D F_{B}}{D F_{C}}\right) \times \frac{v_{B}}{v_{C}}=1.5 \times 15 / 29.9$	M1		For using $\mathrm{P}=\mathrm{Fv}$
	A1		
Ratio is 0.75	A1	3	
7 (i) $\mathrm{v}(100)=0.16 \times 1000-0.016 \times 10000=0$	B1	1	AG
(ii) $\mathrm{a}=1.5 \times 0.16 t^{1 / 2}-0.032 t$	M1		For using $\mathrm{a}=\mathrm{d} v / \mathrm{d} t$
	A1		
$\begin{aligned} & {\left[t^{2 / 3}=0.24 / 0.032 \rightarrow t=56.25 \rightarrow\right.} \\ & \left.\mathrm{v}_{\text {max }}=0.16 \times 421.875-0.016 \times 3164.0625\right] \end{aligned}$	M1		For solving $\mathrm{a}=0$ and subst into $v(t)$
Maximum speed is $16.9 \mathrm{~ms}^{-1}$ ($\operatorname{or} 16 \frac{7}{8} \mathrm{~ms}^{-1}$)	A1	4	
(iii) $\mathrm{s}=2 / 5 \times 0.16 t^{5 / 2}-0.016 t^{3} / 3$	M1		For using $\mathrm{s}=\int v d t$
	A1		
Distance is 1070 m	A1	3	
(iv) $\frac{1}{3} t^{5 / 2}(0.192-0.016 \sqrt{t})=0$	M1		For attempting to solve $\mathrm{s}(t)=0$
Value of t is 144	A1	2	

