Page 4	Mark Scheme: Teachers version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	33

1	Either Obtain correct unsimplified version of x or x^{2} term in expansion of $(2+x)^{-2} \text { or }\left(1+\frac{1}{2} x\right)^{-2}$ Correct first term 4 from correct work Obtain $-4 x$ Obtain $+3 x^{2}$ Or Differentiate and evaluate $\mathrm{f}(0)$ and $\mathrm{f}^{\prime}(0)$ where $\mathrm{f}^{\prime}(x)=k(2+x)^{-3}$ State correct first term 4 Obtain $-4 x$ Obtain $+3 x^{2}$	M1 B1 A1 A1 M1 M1 B1 A1 A1	[4]
2	Use correct quotient or product rule or equivalent Obtain $\frac{\left(1+e^{2 x}\right) \cdot 2 e^{2 x}-e^{2 x} \cdot 2 e^{2 x}}{\left(1+e^{2 x}\right)^{2}}$ or equivalent Substitute $x=\ln 3$ into attempt at first derivative and show use of relevant logarithm property at least once in a correct context Confirm given answer $\frac{9}{50}$ legitimately	M1 A1 M1 A1	[4]
3	(i) State or imply $R=17$ Use correct trigonometric formula to find α Obtain 61.93° with no errors seen (ii) Evaluate $\cos ^{-1 \frac{12}{R}}(=45.099)$ Obtain answer 107.0° Carry out correct method for second answer Obtain answer 16.8° and no others between 0° and 360°	B1 M1 A1 M1 A1 M1 A1	[3]

Page 5	Mark Scheme: Teachers version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	33

\begin{tabular}{|c|c|c|c|c|}
\hline 4 \& (i)

(ii) \& \begin{tabular}{l}
Separate variables and attempt integration on both sides \\
Obtain $2 N^{0.5}$ on left-hand side or equivalent \\
Obtain $-60 \mathrm{e}^{-0.02 t}$ on right-hand side or equivalent \\
Use 0 and 100 to evaluate a constant or as limits in a solution containing terms $a N^{0.5}$ and $b e^{-0.02 t}$ \\
Obtain $2 N^{0.5}=-60 \mathrm{e}^{-0.02 t}+80$ or equivalent \\
Conclude with $N=\left(40-30 \mathrm{e}^{-0.02 t}\right)^{2}$ or equivalent \\
State number approaches 1600 or equivalent, following expression of form $\left(\mathrm{c}+d e^{-0.02 t}\right)^{n}$

 \&

M1* \\
A1 \\
A1 \\
DM1* \\
A1 \\
A1 \\
B1 $\sqrt{ }$
\end{tabular} \& $[6]$

$[1]$ \\

\hline 5 \& (i) \& | Either |
| :--- |
| Use integration by parts and reach an expression $k x^{2} \ln x \pm n \int x^{2} \cdot \frac{1}{x} d x$ |
| Obtain $\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x \mathrm{~d} x$ or equivalent |
| Obtain $\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}$ |
| Or |
| Use Integration by parts and reach an expression $k x(x \ln x-\mathrm{x}) \pm m \int x \ln x-x \mathrm{~d} x$ |
| Obtain $I=\left(x^{2} \ln x-x^{2}\right)-I+\int x \mathrm{~d} x$ |
| Obtain $\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}$ |
| Substitute limits correctly and equate to 22 , having integrated twice |
| Rearrange and confirm given equation $a=\sqrt{\frac{87}{2 \ln a-1}}$ |
| Use iterative process correctly at least once |
| Obtain final answer 5.86 |
| Show sufficient iterations to 4 d. p. to justify 5.86 or show a sign change in the interval (5.855, 5.865) $(6 \rightarrow 5.8030 \rightarrow 5.8795 \rightarrow 5.8491 \rightarrow 5.8611 \rightarrow 5.8564)$ | \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| A1 |
| A1 |
| DM1* |
| A1 |
| M1 |
| A1 |
| A1 | \& [5]

$[3]$ \\
\hline
\end{tabular}

Page 6	Mark Scheme: Teachers version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	33

\begin{tabular}{|c|c|c|c|c|}
\hline 6 \& (i)

(ii) \& \begin{tabular}{l}
Use correct method for finding modulus of their w^{2} or w^{3} or both \\
Obtain $\left|w^{2}\right|=2$ and $\left|w^{3}\right|=2 \sqrt{2}$ or equivalent \\
Use correct method for finding argument of their w^{2} or w^{3} or both \\
Obtain $\arg \left(w^{2}\right)=-\frac{1}{2} \pi$ or $\frac{3}{2} \pi$ and $\arg \left(w^{3}\right)=\frac{1}{4} \pi$ \\
Obtain centre $-\frac{1}{2}-\frac{1}{2} \mathrm{i}$ \\
(their w^{2}) \\
Calculate the diameter or radius using $\left|\mathrm{w}-\mathrm{w}^{2}\right| \mathrm{w} 21$ or right-angled triangle or cosine rule or equivalent \\
Obtain radius $\frac{1}{2} \sqrt{10}$ or equivalent \\
Obtain $\left|\mathrm{z}+\frac{1}{2}+\frac{1}{2} \mathrm{i}\right|=\frac{1}{2} \sqrt{10}$ or equivalent

 \&

M1 \\
A1 \\
M1 \\
A1ft \\
B1ft \\
M1 \\
A1 \\
A1ft
\end{tabular} \& [4]

[4] \\

\hline 7 \& (1) \& | Substitute $x=\frac{1}{2}$ and equate to zero |
| :--- |
| or divide by $(2 x-1)$, reach $\frac{a}{2} x^{2}+k x+\ldots$ and equate remainder to zero or by inspection reach $\frac{a}{2} x^{2}+b x+\mathrm{c}$ and an equation in b / c or by inspection reach $A x^{2}+B x+a$ and an equation in A / B |
| Obtain $a=2$ |
| Attempt to find quadratic factor by division or inspection or equivalent |
| Obtain $(2 x-1)\left(x^{2}+2\right)$ |
| State or imply form $\frac{A}{2 x-1}+\frac{B x+C}{x^{2}+2}$, following factors from part (i) |
| Use relevant method to find a constant |
| Obtain $A=-4$, following factors from part (i) |
| Obtain $B=2$ |
| Obtain $\mathrm{C}=5$ | \& | M1 |
| :--- |
| A1 |
| M1 |
| Alcwo |
| B1 $\sqrt{ }$ |
| M1 |
| A1 $\sqrt{ }$ |
| A1 |
| A1 | \& [4] \\

\hline
\end{tabular}

Page 7	Mark Scheme: Teachers version	Syllabus	Paper
	GCE ASIA LEVEL - October/November 2011	$\mathbf{9 7 0 9}$	$\mathbf{3 3}$

Page 8	Mark Scheme: Teachers version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	33

Page 9	Mark Scheme: Teachers version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	33

	Or State or imply perpendicular line $\mathbf{r}=\left(\begin{array}{l}a \\ 1 \\ 4\end{array}\right)+\mu\left(\begin{array}{l}2 \\ -2 \\ 1\end{array}\right)$ Substitute components for p and solve for μ Obtain $\mu=\frac{8-2 a}{9}$ Equate distance between $(a, 1,4)$ and foot of perpendicular to ± 6 Obtain $\frac{3(8-2 a)}{9}= \pm 6$ or equivalent and hence -5 and 13	B1 M1 M1 A M1 A1	[5]
10	(i) State or imply $\frac{d u}{d x}=\sec ^{2} x$ Express integrand in terms of u and $\mathrm{d} u$ Integrate to obtain $\frac{u^{n+1}}{n+1}$ or equivalent Substitute correct limits correctly to confirm given result $\frac{1}{n+1}$ (ii) (a) Use $\sec ^{2} x=1+\tan ^{2} x$ twice Obtain integrand $\tan ^{4} x+\tan ^{2} x$ Apply result from part (i) to obtain $\frac{1}{3}$ Or Use $\sec ^{2} x=1+\tan ^{2} x$ and the substitution from (i) Obtain $\int u^{2} \mathrm{~d} u$ Apply limits correctly and obtain $\frac{1}{3}$ (b) Arrange, perhaps implied, integrand to $t^{9}+t^{9}+4\left(t^{7}+t^{5}\right)+t^{5}+t^{3}$ Attempt application of result from part (i) at least twice Obtain $\frac{1}{8}+\frac{4}{6}+\frac{1}{4}$ and hence $\frac{25}{24}$ or exact equivalent	B1 M1 A1 A A1 M1 A1 A1 M1 A1 A1 B1 M1	[4] [3]

