			970	9 <u>w11</u> m	ເ <u>ສ_3</u> 3
	Page 4	Mark Scheme: Teachers version	Syllabus	Pape	r
		GCE AS/A LEVEL – October/November 2011	9709	33	
1	Eithe Obtain c $(2+x)^{-2}$	or orrect unsimplified version of x or x^2 term in expansion of or $(1 + \frac{1}{2}x)^{-2}$		M1	
	Correct	irst term 4 from correct work		B1	
	Obtain –	4x		A1	
	Obtain +	$3x^2$		A1	
	Or Differen	tiate and evaluate f(0) and f' (0) where f' $(x) = k(2+x)^{-3}$		M1	
	State con	rect first term 4		B1	
	Obtain –	4x		A1	
	Obtain +	$3x^2$		A1	[4]
2	Use corr	ect quotient or product rule or equivalent		M1	
	Obtain -	$\frac{(1+e^{2x}) \cdot 2e^{2x} - e^{2x} \cdot 2e^{2x}}{(1+e^{2x})^2}$ or equivalent		A1	
	Substitut property	The $x = \ln 3$ into attempt at first derivative and show use of relevant at least once in a correct context	nt logarithm	M1	
	Confirm	given answer $\frac{9}{50}$ legitimately		A1	[4]
3	(i)	State or imply $R = 17$		B1	
		Use correct trigonometric formula to find α		M1	
		Obtain 61.93° with no errors seen		A1	[3]
	(ii)	Evaluate $\cos^{-1} \frac{12}{R}$ (= 45.099)		M1	
		Obtain answer 107.0°		A1	
		Carry out correct method for second answer		M1	
		Obtain answer 16.8° and no others between 0° and 360°		A1	[4]

	Page 5	Mark Scheme: Teachers version	Syllabus		<u>s_3</u> er
		GCE AS/A LEVEL – October/November 2011	9709	33	
4	(i)	Separate variables and attempt integration on both sides		M1*	
		Obtain $2N^{0.5}$ on left-hand side or equivalent		A1	
		Obtain $-60e^{-0.02t}$ on right-hand side or equivalent		A1	
		Use 0 and 100 to evaluate a constant or as limits in a solution can $aN^{o.5}$ and $be^{-0.02t}$	ontaining terms	DM1*	
		Obtain $2N^{0.5} = -60e^{-0.02t} + 80$ or equivalent		A1	
		Conclude with $N = (40 - 30e^{-0.02t})^2$ or equivalent		A1	[6]
	(ii)	State number approaches 1600 or equivalent, following express $(c + de^{-0.02t})^n$	ion of form	B1√	[1]
5	(i)	Either Use integration by parts and reach an expression $kx^2 \ln x \pm n \int x^2$	$\frac{1}{x}dx$	M1	
		Obtain $\frac{1}{2}x^2 \ln x - \int \frac{1}{2}x dx$ or equivalent		A1	
		Obtain $\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$		A1	
		Or Use Integration by parts and reach an expression $kx(x\ln x - x) \pm$	$m\int x\ln x - xdx$	M1	
		Obtain $I = (x^2 \ln x - x^2) - I + \int x dx$		A1	
		Obtain $\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$		A1	
		Substitute limits correctly and equate to 22, having integrated to	wice	DM1*	
		Rearrange and confirm given equation $a = \sqrt{\frac{87}{2 \ln a - 1}}$		A1	[5]
	(ii)	Use iterative process correctly at least once		M1	
		Obtain final answer 5.86		A1	
		Show sufficient iterations to 4 d.p. to justify 5.86 or show a signification of the state of the	n change in the	A1	
		$(6 \rightarrow 5.8030 \rightarrow 5.8795 \rightarrow 5.8491 \rightarrow 5.8611 \rightarrow 5.8564)$			[3]

	Dago 6	970 Mark Scheme: Teachers version Syllabus	<u>9 w11 m</u>	<u>15 33</u>
	rage o	GCE AS/A LEVEL – October/November 2011 9709	33	•
6	(i)	Use correct method for finding modulus of their w ² or w ³ or both	M1	
		Obtain $ w^2 = 2$ and $ w^3 = 2\sqrt{2}$ or equivalent	A1	
		Use correct method for finding argument of their w^2 or w^3 or both	M1	
		Obtain $arg(w^2) = -\frac{1}{2}\pi$ or $\frac{3}{2}\pi$ and $arg(w^3) = \frac{1}{4}\pi$	A1ft	[4]
	(ii)	Obtain centre $-\frac{1}{2} - \frac{1}{2}i$ (their w ²)	B1ft	
		Calculate the diameter or radius using $ w-w^2 w21$ or right-angled triangle or cosine rule or equivalent	M1	
		Obtain radius $\frac{1}{2}\sqrt{10}$ or equivalent	A1	
		Obtain $\left z + \frac{1}{2} + \frac{1}{2}i \right = \frac{1}{2}\sqrt{10}$ or equivalent	A1ft	[4]
7	(i)	Substitute $x = \frac{1}{2}$ and equate to zero		
		or divide by $(2x-1)$, reach $\frac{a}{2}x^2 + kx + \dots$ and equate remainder to zero		
		or by inspection reach $\frac{a}{2}x^2 + bx + c$ and an equation in b/c		
		or by inspection reach $Ax^2 + Bx + a$ and an equation in A/B	M1	
		Obtain $a = 2$	A1	
		Attempt to find quadratic factor by division or inspection or equivalent	M1	
		Obtain $(2x - 1)(x^2 + 2)$	A1cwo	[4]
	(ii)	State or imply form $\frac{A}{2x-1} + \frac{Bx+C}{x^2+2}$, following factors from part (i)	B1√	
		Use relevant method to find a constant	M1	
		Obtain $A = -4$, following factors from part (i)	A1√	
		Obtain $B = 2$	A1	
		Obtain $C = 5$	A1	

			970	9_w11_m	<u>is 33</u>
	Page 7	Mark Scheme: Teachers version	Syllabus	Pape	r
		GCE AS/A LEVEL – October/November 2011	9709	33	
8	(i)	Differentiate y to obtain $3\sin^2 t \cos t - 3\cos^2 t \sin t$ o.e.		B1	
		Use $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dt}{dx}$		M1	
		Obtain given result $-3\sin t \cos t$		A1cwo	[3]
	(ii)	Identify parameter at origin as $t = \frac{3}{4}\pi$		B1	
		Use $t = \frac{3}{4}\pi$ to obtain $\frac{3}{2}$		B1	[2]
	(iii)	Rewrite equation as equation in one trig variable e.g. $sin2t = -\frac{2}{3}$, $9 \sin^4 x - 9 \sin^2 x + 1 = 0$, $\tan^2 x + 3 \tan x + 1 = 0$	0	B1	
		Find at least one value of <i>t</i> from equation of form $\sin 2t = k$ o.e.		M1	
		Obtain 1.9		A1	
		Obtain 2.8 and no others		A1	[4]

			9709_w11_ms_3			
Page 8		Mark Scheme: Teachers version	Syllabus	Paper		
		GCE AS/A LEVEL – October/November 2011	9709	33		
9	(i)	Calculate scalar product of direction of l and normal to p	M1			
		Obtain 4 x 2 + 3 × (-2) + (-2) × $l = 0$ and conclude accordingly	A1	[2]		
	(ii)	Substitute $(a, 1, 4)$ in equation of p and solve for a	M1			
		Obtain $a = 4$	A1	[2]		
	(iii)	Either Attempt use of formula for perpendicular distance using <i>(a,</i> 1, 4)	M1			
		Obtain at least $\frac{2a - 2 + 4 - 10}{\sqrt{4 + 4 + 1}} = 6$	A1			
		Obtain $a = 13$	A1			
		Attempt solution of $\frac{2a-8}{3} = -6$	M1			
		Obtain $a = -5$	A1			
		Or Form equation of parallel plane and substitute (<i>a</i> , 1, 4)	M1			
		Obtain $\frac{2a+2}{3} - \frac{10}{3} = 6$	A1			
		Obtain $a = 13$	A1			
		Solve $\frac{2a+2}{3} - \frac{10}{3} = -6$	M1			
		Obtain $a = -5$	A1			
		Or State a vector from a pt on the plane to (a, 1, 4) e.g. $\begin{pmatrix} a-5\\1\\4 \end{pmatrix} \text{ or } \begin{pmatrix} a\\1\\-6 \end{pmatrix}$	B1			
		Calculate the component of this vector in the direction of the unit normal and equate to 6 : $\frac{1}{3} \begin{pmatrix} a-5\\1\\4 \end{pmatrix} \cdot \begin{pmatrix} 2\\-2\\1 \end{pmatrix} = 6$	t M1			
		Obtain $a = 13$	A1			
		Solve $\frac{1}{3} \begin{pmatrix} a-5\\1\\4 \end{pmatrix} \cdot \begin{pmatrix} 2\\-2\\1 \end{pmatrix} = -6$	M1			
		Obtain $a = -5$	A1			

Dama A		Made October 7 and a		<u>9709_w11_ms_3</u>	
Page 9			Mark Scheme: Leachers version	Syllabus	Paper
			GCE AS/A LEVEL - October/November 2011	9709	33
		(State	Dr e or imply perpendicular line $\mathbf{r} = \begin{pmatrix} a \\ 1 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$	B1	
		Subs	stitute components for p and solve for μ	M1	
		Obta	$\lim \mu = \frac{8 - 2a}{9}$	A1	
		Equ	ate distance between (a, 1, 4) and foot of perpendicular to \pm	6 M1	
		Obta	ain $\frac{3(8-2a)}{9} = \pm 6$ or equivalent and hence -5 and 13	A1	[5]
10	(i)	State	e or imply $\frac{du}{dx} = \sec^2 x$	B1	
		Exp	ress integrand in terms of u and du	M1	
		Integ	grate to obtain $\frac{u^{n+1}}{n+1}$ or equivalent	A1	
		Subs	stitute correct limits correctly to confirm given result $\frac{1}{n+1}$	A1	[4]
	(ii)	(a)	Use $\sec^2 x = 1 + \tan^2 x$ twice	M1	
			Obtain integrand $\tan^4 x + \tan^2 x$	A1	
			Apply result from part (i) to obtain $\frac{1}{3}$	A1	[3]
			Or Use $\sec^2 x = 1 + \tan^2 x$ and the substitution from (i)	M1	
			Obtain $\int u^2 du$	A1	
			Apply limits correctly and obtain $\frac{1}{3}$	A1	
		(b)	Arrange, perhaps implied, integrand to $t^9 + t^7 + 4(t^7 + t^5) + t^5 + t^3$	B1	
			Attempt application of result from part (i) at least twice	M1	
			Obtain $\frac{1}{8} + \frac{4}{6} + \frac{1}{4}$ and hence $\frac{25}{24}$ or exact equivalent	A1	[3]