	Dana /	Mark Scheme: Teachers' version	9709_ Svllabue	w11_m	<u>s 32</u>
	1 aye 4	GCE AS/A LEVEL – October/November 2011	9709	32	
1	Rearrange a Solve a 3-te Obtain simp Obtain final	s $e^{2x} - e^x - 6 = 0$, or $u^2 - u - 6 = 0$, or equivalent rm quadratic for e^x or for u lifted solution $e^x = 3$ or $u = 3$ answer $x = 1.10$ and no other	<u> </u>	B1 M1 A1 A1	[4]
2	EITHER: U	Jse chain rule		M1	
	C	obtain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent		A1	
	C	obtain $\frac{dy}{dt} = -6\cos^2 t \sin t$, or equivalent		A1	
	τ	Jse $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$		M1	
	(Obtain final answer $\frac{dy}{dx} = -\cos t$		A1	
	OR: I	Express y in terms of x and use chain rule $\frac{1}{1}$		M1	
	(Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent		A1	
	(Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent		A1	
	Η	Express derivative in terms of t		M1	
	(Obtain final answer $\frac{dy}{dx} = -\cos t$		A1	[5]
3	(i) EITHE	<i>R</i> : Attempt division by $x^2 - x + 1$ reaching a partial quotient of	of $x^2 + kx$	M1	
		Obtain quotient $x^2 + 4x + 3$ Equate remainder of form <i>lx</i> to zero and solve for <i>a</i> , or equ	uvalent	A1 M1	
	()P.	Obtain answer $a = 1$ Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to	to zero	A1 M1	
	UK.	Obtain a correct equation in a in any unsimplified form	.0 2010	A1	
		Expand terms, use $i^2 = -1$ and solve for <i>a</i> Obtain answer $a = 1$		M1 A1	[4]
	[SR: T] equatio The sec	the first M1 is earned if inspection reaches an unknown factor n in B and/or C, or an unknown factor $Ax^2 + Bx + 3$ and an equip cond M1 is only earned if use of the equation $a = B - C$ is seen	$x^{2} + Bx + C$ and an uation in A and/or B. or implied.]		Γ.]
	(ii) State an	nswer, e.g. $x = -3$		B1	[0]
	State ai	iswer, e.g. $x = -1$ and no others		BI	[2]
4	Separate van	tiables and attempt integration of at least one side $l_{1}(x + 1)$		M1	
	Obtain term Obtain term	ln(x + 1) k ln sin 2 θ , where $k = \pm 1, \pm 2, \text{ or } \pm \frac{1}{2}$		M1	
	Obtain correct term $\frac{1}{2} \ln \sin 2\theta$			A1	
	Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x + 1)$ and			l	
	$b \ln \sin 2\theta$	ion in any form $e = \ln(r+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (ft on $k = \frac{1}{2}$	+1 +2 or +1	M1	
	Rearrange a	nd obtain $x = \sqrt{(2 \sin 2\theta)} - 1$, or simple equivalent	$\pm 1, \pm 2, 01 \pm \frac{1}{2}$	A1	[7]
	itearrange a	$\sqrt{2 \sin 2\theta}$, i, or simple equivalent			ι']

		9709 W				
	Page 5		Mark Scheme: Teachers' version	Syllabus	Pape	r –
			GCE AS/A LEVEL – October/November 2011	9709	32	
5	(i)	Make rec Sketch th	ognisable sketch of a relevant graph over the given interval e other relevant graph and justify the given statement		B1 B1	[2]
	(ii)	Consider	the sign of sec $x - (3 - \frac{1}{2}x^2)$ at $x = 1$ and $x = 1.4$, or equival	ent	M1	
		Complete	the argument with correct calculated values		A1	[2]
	(iii)	Convert t	he given equation to sec $x = 3 - \frac{1}{2}x^2$ or work <i>vice versa</i>		B1	[1]
	(iv)	Use a cor Obtain fin	rect iterative formula correctly at least once nal answer 1.13		M1 A1	
		in the inte [SR: Succ	recent iterations to 4 d.p. to justify 1.13 to 2 d.p., or show t erval (1.125, 1.135) cessive evaluation of the iterative function with $x = 1, 2,$	scores M0.]	A1	[3]
6	(i)	State or in Use trig f Obtain α [Do not a M1A0]	mply $R = \sqrt{10}$ Formulae to find α = 71.57° with no errors seen Illow radians in this part. If the only trig error is a sign error	or in $\cos(x - \alpha)$ give	B1 M1 A1	[3]
	(ii)	Evaluate Carry out Obtain an Use an ap Obtain se [Ignore an [Treat ans [SR: The $\cos 2\theta$, or in the giv reject the	$\cos^{-1}(2/\sqrt{10})$ correctly to at least 1 d.p. (50.7684°) (All an appropriate method to find a value of 2θ in $0^{\circ} < 2\theta < 18$ answer for θ in the given range, e.g. $\theta = 61.2^{\circ}$ propriate method to find another value of 2θ in the above ra- cond angle, e.g. $\theta = 10.4^{\circ}$, and no others in the given range inswers outside the given range.] swers in radians as a misread and deduct A1 from the answer a use of correct trig formulae to obtain a 3-term quadrati- tan 2θ earns M1; then A1 for a correct quadratic, M1 for o en range, and A1 + A1 for the two correct answers (candida spurious roots to get the final A1).]	ow 50.7° here) 0° nge rs for the angles.] ic in tan θ , sin 2θ , btaining a value of θ tes who square must	B1√ M1 A1 M1 A1	[5]

Page 6		ge 6	Mark Scheme: Teachers' version	Syllabus	Paper	
		•	GCE AS/A LEVEL – October/November 2011	9709	32	
7	(i)	Use a corr Obtain the	rect method to express \overrightarrow{OP} in terms of λ e given answer		M1 A1	[2]
	(ii)	<i>EITHER</i> : <i>OR1</i> : Obtain a of Solve for Obtain $\lambda =$ [SR: The	Use correct method to express scalar product of \overrightarrow{OA} and in terms of λ Using the correct method for the moduli, divide scalar pro- moduli and express $\cos AOP = \cos BOP$ in terms of λ , or if Use correct method to express $OA^2 + OP^2 - AP^2$, or $OB^2 - of \lambda$ Using the correct method for the moduli, divide each exp product of the relevant moduli and express $\cos AOP = \cos of \lambda$ correct equation in any form, e.g. $\frac{9+2\lambda}{3\sqrt{(9+4\lambda+12\lambda^2)}} = \frac{1}{5\sqrt{(9+3\lambda^2)^2}}$	\overrightarrow{OP} , or \overrightarrow{OB} and \overrightarrow{OP} oducts by products of n terms of λ and \overrightarrow{OP} $+ \overrightarrow{OP^2} - \overrightarrow{BP^2}$ in terms pression by twice th s \overrightarrow{BOP} in terms of λ $11 + 14\lambda$ $\overrightarrow{P} + 4\lambda + 12\lambda^2$) M to a sound attempt a	5 M1 f M1* s M1 e d, M1* A1 1(dep*) A1	[5]
		$\cos \frac{1}{2} AC$ but accep spurious r [SR: Allo <i>OP</i> to sc cases.]	<i>DB</i> and obtaining an equation in λ . The exact value of the t non-exact working giving a value of λ which rounds to negative root of the quadratic in λ is rejected.] w a solution reaching $\lambda = \frac{3}{8}$ after cancelling identical inco ore 4/5. The marking will run M1M1A0M1A1, or M1M	cosine is $\sqrt{(13/15)}$ 0.375, provided th rrect expressions fo //1A1M1A0 in suc	, e r h	
	(iii)	Verify the	e given statement correctly		B1	[1]
8	(i)	Use any r Obtain on Obtain a s Obtain the	elevant method to determine a constant the of the values $A = 3$, $B = 4$, $C = 0$ second value third value		M1 A1 A1 A1	[4]
	(ii)	Integrate a Integrate a Obtain ter Substitute $a \ln(2 - x)$ Obtain give	and obtain term $-3 \ln(2 - x)$ and obtain term $k \ln(4 + x^2)$ rm $2 \ln(4 + x^2)$ e correct limits correctly in a complete integral of the form $(1 + b \ln(4 + x^2), ab \neq 0)$ we answer following full and correct working		B1√ M1 A1√ M1 A1	[5]

Page 7		ge 7	Mark Scheme: Teachers' version	Syllabus		
		J	GCE AS/A LEVEL – October/November 2011	9709	32	
9	(i)	Use produ Obtain co Equate de Obtain an Obtain an	act rule rrect derivative in any form privative to zero and solve for x swer $x = e^{-\frac{1}{2}}$, or equivalent swer $y = -\frac{1}{2}e^{-1}$, or equivalent		M1 A1 M1 A1 A1	[5]
	(ii)	Attempt in	ntegration by parts reaching $kx^3 \ln x \pm k \int x^3 \cdot \frac{1}{x} dx$		M1*	
		Obtain $\frac{1}{3}$.	$x^{3} \ln x - \frac{1}{3} \int x^{2} dx$, or equivalent		A1	
		Integrate	again and obtain $\frac{1}{3}x^3 \ln x - \frac{1}{6}x^3$, or equivalent		A1	
		Use limits Obtain an	s $x = 1$ and $x = e$, having integrated twice swer $\frac{1}{9}(2e^3 + 1)$, or exact equivalent		M1(dep*) A1	[5]
		[SR: An a	attempt reaching $ax^2 (x \ln x - x) + b \int 2x(x \ln x - x) dx$ score	es M1. Then give	the	
		first A1 fo	or $I = x^2 (x \ln x - x) - 2I + \int 2x^2 dx$, or equivalent.]			
10	(a)	<i>EITHER</i> : <i>OR</i> :	Square $x + iy$ and equate real and imaginary parts to 1 and Obtain $x^2 - y^2 = 1$ and $2xy = -2\sqrt{6}$ Eliminate one variable and find an equation in the other Obtain $x^4 - x^2 - 6 = 0$ or $y^4 + y^2 - 6 = 0$, or 3-term equivale Obtain answers $\pm (\sqrt{3} - i\sqrt{2})$ Denoting $1 - 2\sqrt{6i}$ by $Rcis\theta$, state, or imply, square row	$1 - 2\sqrt{6}$ respective ent ots are $\pm \sqrt{R} \operatorname{cis}(\frac{1}{2})$	$\begin{array}{c} \text{vely} M1^* \\ & \text{A1} \\ M1(\text{dep}^*) \\ & \text{A1} \\ & \text{A1} \\ & \text{A1} \\ \\ & \frac{1}{2}\theta \end{array}$	[5]
			and find values of R and either $\cos \theta$ or $\sin \theta$ or $\tan \theta$ Obtain $\pm \sqrt{5} \left(\cos \frac{1}{2} \theta + i \sin \frac{1}{2} \theta \right)$, and $\cos \theta = \frac{1}{5}$ or $\tan \theta = -2\sqrt{6}$ Use correct method to find an exact value of $\cos \frac{1}{2} \theta$ or si Obtain $\cos \frac{1}{2} \theta = \pm \sqrt{\frac{3}{5}}$ and $\sin \frac{1}{2} \theta = \pm \sqrt{\frac{2}{5}}$, or equivalent Obtain answers $\pm (\sqrt{3} - i\sqrt{2})$, or equivalent [Condone omission of \pm except in the final answers.]	$\sin \theta = -\frac{2\sqrt{6}}{5}$ $\ln \frac{1}{2} \theta$	M1* or A1 M1(dep*) A1 A1	
	(b)	Show poin Show a ci Shade the Carry out Obtain an	nt representing 3i on a sketch of an Argand diagram rcle with centre at the point representing 3i and radius 2 interior of the circle a complete method for finding the greatest value of arg z swer 131.8° or 2.30 (or 2.3) radians		$B1 \\ B1 \\ M1 \\ A1$	[5]

[The f.t. is on solutions where the centre is at the point representing –3i.]