		-	9709	w11_ms	<u>3 2</u> 3
	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2011	9709	23	
1	Obtain deriva	tive of the form $\frac{k}{5x+1}$, where $k = 1, 5$ or $\frac{1}{5}$		M1	
	Obtain correc	t derivative $\frac{5}{5x+1}$		A1	
	Substitute <i>x</i> =	= 4 into expression for derivative and obtain $\frac{5}{21}$		A1√	[3]
2	EITHER	State or imply non-modular inequality $(2x - 3)^2 \le (3x)^2$ equation or pair of linear equations Make reasonable solution attempt at a 3-term quadratic, equations) ² , or correspondin or solve two linea	g M1 r M1	
		Obtain critical values -3 and $\frac{3}{5}$		A1	
		State correct answer $x \le -3$ or $x \ge \frac{3}{5}$		A1	
	OR	State one critical value, e.g. $x = -3$, by solving a linear equ or from a graphical method or by inspection State the other critical value correctly	uation (or inequality	r) B1 B2	
		State correct answer $x \le -3$ or $x \ge \frac{3}{5}$		B1	[4]
3	Use $2 \ln(x + 3) = \ln(x + 3)^2$ Use law for addition or subtraction of logarithms Obtain correct quadratic expression in <i>x</i> Make reasonable solution attempt at a 3-term quadratic State <i>x</i> = 9 and no other solutions (condone <i>x</i> = -1 not deleted)				[5]
4	(i) State con	trrect expression $\frac{1}{2} + \frac{1}{2}\cos 2x$, or equivalent		B1	[1]
	(ii) Integrate	e an expression of the form $a + b \cos 2x$, where $ab \neq 0$, correct	tly	M1	
	State con	rrect integral $\frac{1}{2}x + \frac{1}{4}\sin 2x$, or equivalent		A1	
	Obtain c	orrect integral (for sin 2x term) of $-\frac{1}{2}\cos 2x$		B1	
	Attempt Obtain g	to substitute limits, using exact values given answer correctly		M1 A1	[5]
5	Use trig identity correctly to obtain a quadratic in tan 2θ Solve the quadratic correctly				
	Obtain tan 26	$\theta = 1 \text{ or } -\frac{4}{5}$		A1	
	Obtain one co Carry out cor Obtain remai [Ignore answ	orrect answer rect method for second answer from either root ning 3 answers from 22.5°, 112.5°, 70.7°, 160.7° and no othe ers outside the given range]	rs in the range	A1 M1 A1	[6]

<u>9709_w</u>							
Page 5		ge 5	Mark Scheme: Teachers' version	Syllabus	Paper		
			GCE AS/A LEVEL – October/November 2011	9709	23		
6	(i)	Substitute Obtain a c Obtain a s Solve a re Obtain <i>a</i> =	e $x = 1$ or $x = -2$ and equate to zero correct equation in any form with powers of x values calcula second correct equation in any form elevant pair of equations for a or for b = 3 and $b = -5$	ted	M1 A1 A1 M1 A1	[5]	
	(ii)	Attempt of Obtain pa Obtain x^2 S.C. M1A	division by $x^2 + x - 2$, or equivalent, and reach a partial quot artial quotient $x^2 + 2x$ + 2x - 1 with no errors seen $x_1 \sqrt{\text{ if } a}$ and/or 'b' incorrect	tient of $x^2 + kx$	M1 A1 A1	[3]	
7	(i)	At any sta Use produ Obtain co Equate de	age, state the correct derivative of $e^{\frac{1}{2}x}$ uct rule prrect derivative in any form erivative to 3 and obtain given equation correctly		B1 M1 A1 A1	[4]	
	(ii)	Consider Complete	sign of $2 + 6e^{-\frac{1}{2}x} - x$, or equivalent the argument correctly with appropriate calculations		M1 A1	[2]	
	(iii)	Use the it Obtain fir Show suff the interve	erative formula correctly at least once hal answer 3.21 ficient iterations to justify its accuracy to 2 d.p. or show the al (3.205, 3.215)	re is a sign change i	M1 A1 n B1	[3]	
8	(i)	State $2y$	$\frac{dy}{dx}$ as derivative of y^2 , or equivalent		B1		
		Equate de	$\frac{1}{dx}$		MI		
		Obtain giv	ven answer correctly		A1	[3]	
	(ii)	Equate gr Obtain $y =$ Substitute Obtain $2x$ Correct m	radient expression to -1 and rearrange = $2x$ e into original equation to obtain an equation in x^2 (or y^2) $x^2 - 3x - 2 = 0$ (or $y^2 - 3y - 4 = 0$) nethod to solve their quadratic equation		M1 A1 M1 A1 M1	F (7	
		State answ	wers $(-\frac{1}{2}, -1)$ and $(2, 4)$		AI	[6]	