9709 w11 ms 23

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper

23

1 Obtain derivative of the form $\frac{k}{5 x+1}$, where $k=1,5$ or $\frac{1}{5}$ M1

Obtain correct derivative $\frac{5}{5 x+1}$
Substitute $x=4$ into expression for derivative and obtain $\frac{5}{21}$
A1 $\sqrt{ }$

2 EITHER $\begin{aligned} & \text { State or imply non-modular inequality }(2 x-3)^{2} \leqslant(3 x)^{2} \text {, or corresponding } \\ & \text { equation or pair of linear equations }\end{aligned}$ M1
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations
Obtain critical values -3 and $\frac{3}{5}$
State correct answer $x \leqslant-3$ or $x \geqslant \frac{3}{5}$

OR State one critical value, e.g. $x=-3$, by solving a linear equation (or inequality) or from a graphical method or by inspection B1 $\begin{array}{ll}\text { State the other critical value correctly } & \text { B2 }\end{array}$
State correct answer $x \leqslant-3$ or $x \geqslant \frac{3}{5}$

3 Use $2 \ln (x+3)=\ln (x+3)^{2} \quad$ M1
Use law for addition or subtraction of logarithms M1
Obtain correct quadratic expression in x A1
Make reasonable solution attempt at a 3-term quadratic M1
State $x=9$ and no other solutions (condone $x=-1$ not deleted)

4 (i) State correct expression $\frac{1}{2}+\frac{1}{2} \cos 2 x$, or equivalent B1
(ii) Integrate an expression of the form $a+b \cos 2 x$, where $a b \neq 0$, correctly M1
State correct integral $\frac{1}{2} x+\frac{1}{4} \sin 2 x$, or equivalent
Obtain correct integral (for $\sin 2 x$ term) of $-\frac{1}{2} \cos 2 x$
Attempt to substitute limits, using exact values M1
Obtain given answer correctly A1

5 Use trig identity correctly to obtain a quadratic in $\tan 2 \theta \quad$ M1
Solve the quadratic correctly M1
Obtain $\tan 2 \theta=1$ or $-\frac{4}{5}$
Obtain one correct answer
Carry out correct method for second answer from either root
Obtain remaining 3 answers from $22.5^{\circ}, 112.5^{\circ}, 70.7^{\circ}, 160.7^{\circ}$ and no others in the range A1 [Ignore answers outside the given range]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	23

6 (i) Substitute $x=1$ or $x=-2$ and equate to zero M1
Obtain a correct equation in any form with powers of x values calculated A1
Obtain a second correct equation in any form A1
Solve a relevant pair of equations for a or for b M1
Obtain $a=3$ and $b=-5$ A1
(ii) Attempt division by $x^{2}+x-2$, or equivalent, and reach a partial quotient of $x^{2}+k x$ M1
Obtain partial quotient $x^{2}+2 x$ A1
Obtain $x^{2}+2 x-1$ with no errors seen A1
S.C. M1A1 $\sqrt{ }$ if ' a ' and/or ' b ' incorrect[5][3]
7 (i) At any stage, state the correct derivative of $e^{\frac{1}{2} x}$ B1
Use product rule M1
Obtain correct derivative in any form A1Equate derivative to 3 and obtain given equation correctlyA1
(ii) Consider sign of $2+6 \mathrm{e}^{-\frac{1}{2} x}-x$, or equivalent M1
Complete the argument correctly with appropriate calculations A1
(iii) Use the iterative formula correctly at least once M1
Obtain final answer 3.21 A1Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change inthe interval (3.205, 3.215)B1
8 (i) State $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of y^{2}, or equivalent B1
Equate derivative of LHS to zero and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ M1
Obtain given answer correctlyA1
(ii) Equate gradient expression to -1 and rearrange M1
Obtain $y=2 x$ A1
Substitute into original equation to obtain an equation in x^{2} (or y^{2}) M1
Obtain $2 x^{2}-3 x-2=0\left(\right.$ or $\left.y^{2}-3 y-4=0\right)$ A1
Correct method to solve their quadratic equation M1
State answers $(-1 / 2,-1)$ and $(2,4)$ A1

